PRINT Your Name: \qquad

Quiz for September 24, 2009

Suppose A and B are $n \times n$ matrices with $A B=I$. Does $B A$ have to equal I ? If yes, give a proof. If no, give an example.

ANSWER: YES. The hypothesis $A B=I$ guarantees that B is non-singular because if x is a vector with $B x=0$, then we multiply both sides by A to learn $x=A B x=A 0=0$. The only vector that B sends to zero is $x=0$. The nonsingular matrix theorem (see, for example, problem 3 on Exam 1) guarantees that B is invertible. So there is a matrix B^{-1} with $B B^{-1}=I$ and $B^{-1} B=I$. Multiply both sides of $A B=I$ on the right with B^{-1} to get

$$
A=A B B^{-1}=I B^{-1}=B^{-1}
$$

We conclude that

$$
B A=B B^{-1}=I
$$

