\qquad

Quiz for June 22, 2006

Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation. Suppose that

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{c}2 \\ -1\end{array}\right]\right)$. Explain.
ANSWER: We see that

$$
\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0
\end{array}\right]-1\left[\begin{array}{l}
0 \\
1
\end{array}\right] .
$$

The hypothesis that T is a linear transformation says that

$$
\begin{aligned}
& T\left(\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right)= T\left(2\left[\begin{array}{l}
1 \\
0
\end{array}\right]-1\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=2 T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)-1 T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right) \\
&=2\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]-1\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1 \\
-2
\end{array}\right] .
\end{aligned}
$$

