PRINT Your Name:

Quiz for June 14, 2006

Let A be an $m \times m$ non-singular matrix and let B be an $m \times n$ matrix. Prove that the null space of AB is equal to the null space of B.

ANSWER: First we prove that the null space of B is contained in the null space of AB. (This part of the argument does not require that A be non-singular.) We are given a vector v in \mathbb{R}^n with Bv = 0. Multiply both sides of the equation by A to get ABv = A0 = 0 to conclude that v is in the null space of AB.

Now we prove that the null space of AB is contained in the null space of B. We start with a vector v in \mathbb{R}^n with ABv = 0. The matrix A is non-singular, so the only way for A(Bv) to equal zero is if Bv is already zero. Thus, v is in the null space of B.