PRINT Your Name: \qquad
Quiz for November 5, 2009
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation with $T\left(e_{1}\right)=u_{1}$ and $T\left(e_{2}\right)=u_{2}$, where

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad u_{1}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right], \quad \text { and } \quad u_{2}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{l}3 \\ 2\end{array}\right]\right)$. Explain what you are doing.
ANSWER: We see that $\left[\begin{array}{l}3 \\ 2\end{array}\right]=3 e_{1}+2 e_{2}$. The function T is a linear transformation so,

$$
\begin{gathered}
T\left(\left[\begin{array}{l}
3 \\
2
\end{array}\right]\right)=T\left(3 e_{1}+2 e_{2}\right)=T\left(3 e_{1}\right)+T\left(2 e_{2}\right)=3 T\left(e_{1}\right)+2 T\left(e_{2}\right)=3 u_{1}+2 u_{2} \\
=3\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+2\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
7 \\
2 \\
-3
\end{array}\right] .
\end{gathered}
$$

