PRINT Your Name: \qquad

Quiz for November 12, 2009

Find all of the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{cc}
1 & -1 \\
1 & 3
\end{array}\right]
$$

ANSWER: To find the eigenvalues of A, we solve $\operatorname{det}(A-\lambda I)=0$. We solve:

$$
\begin{gathered}
\operatorname{det}\left[\begin{array}{cc}
1-\lambda & -1 \\
1 & 3-\lambda
\end{array}\right]=0 \\
(1-\lambda)(3-\lambda)+1=0 \\
\lambda^{2}-4 \lambda+4=0 \\
(\lambda-2)^{2}=0
\end{gathered}
$$

The only eigenvalue of A is $\lambda=2$. To find the eigenvectors of A which belong to $\lambda=2$ we find the null space of $A-2 I=\left[\begin{array}{cc}-1 & -1 \\ 1 & 1\end{array}\right]$. Apply the ERO $R 2 \mapsto R 2+R 1$ to obtain $\left[\begin{array}{cc}-1 & -1 \\ 0 & 0\end{array}\right]$. Mulitply row 1 by -1 to obtain $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$. The vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ is an eigenvalue of A belonging to $\lambda=2$ if and only if $x_{1}=-x_{2}$. We conclude that the set of eigenvectors of A belonging to $\lambda=2$ is

$$
\left\{\left.x_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \right\rvert\, x_{2} \in \mathbb{R}\right\} .
$$

We check that $A\left[\begin{array}{c}-1 \\ 1\end{array}\right]=\left[\begin{array}{c}-2 \\ 2\end{array}\right]=2\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

