PRINT Your Name:

Quiz for November 12, 2009

Find all of the eigenvalues and eigenvectors of the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}.$$

ANSWER: To find the eigenvalues of A, we solve $det(A - \lambda I) = 0$. We solve:

$$\det \begin{bmatrix} 1-\lambda & -1\\ 1 & 3-\lambda \end{bmatrix} = 0$$
$$(1-\lambda)(3-\lambda)+1 = 0$$
$$\lambda^2 - 4\lambda + 4 = 0$$
$$(\lambda - 2)^2 = 0.$$

The only eigenvalue of A is $\lambda = 2$. To find the eigenvectors of A which belong to $\lambda = 2$ we find the null space of $A - 2I = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}$. Apply the ERO $R2 \mapsto R2 + R1$ to obtain $\begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}$. Mulitply row 1 by -1 to obtain $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. The vector $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ is an eigenvalue of A belonging to $\lambda = 2$ if and only if $x_1 = -x_2$. We conclude that the set of eigenvectors of A belonging to $\lambda = 2$ is

$$\left\{ x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} \middle| x_2 \in \mathbb{R} \right\}.$$

We check that $A\begin{bmatrix} -1\\ 1 \end{bmatrix} = \begin{bmatrix} -2\\ 2 \end{bmatrix} = 2\begin{bmatrix} -1\\ 1 \end{bmatrix}$.