PRINT Your Name: \qquad
Quiz for October 29, 2009
Let A be an $m \times m$ nonsingular matrix and let B be an $m \times n$ matrix. Prove that $A B$ and B have the same rank.

ANSWER: We first prove that $A B$ and B have the same null space.
The null space of B is contained in the null space of $A B$: Take v in the null space of B. Thus, $B v=0$. Multiply by A to see that $A B v=0$. Thus, v is in the null space of $A B$.

The null space of $A B$ is contained in the null space of B : Take v in the null space of $A B$. Thus, $A B v=0$. Multiply by A^{-1} to see that $A^{-1} A B v=0$. Thus, $B v=0$ and v is in the null space of B.

Now we finish the proof: Use the rank-nullity Theorem. The rank of $A B$ is equal to the number of columns of $A B$ minus the nullity of $A B$. The number of columns of $A B$ is the same as the number of columns of B, and the nullity of $A B$ is the same as the nullity of B. So the rank of $A B$ is equal to the number of columns of B minus the nullity of B, and this, by the rank-nullity Theorem, is the rank of B.

