PRINT Your Name: \qquad

Quiz for October 15, 2009

Let W be the subspace of \mathbb{R}^{4} defined by

$$
W=\left\{x \mid a^{\mathrm{T}} x=0 \quad \text { and } \quad b^{\mathrm{T}} x=0 \quad \text { and } \quad c^{\mathrm{T}} x=0\right\} .
$$

Calculate the dimension of W for

$$
a=\left[\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right], \quad b=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], \quad \text { and } \quad c=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right] .
$$

ANSWER: We see that W is the null space of

$$
A=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

We have an algorithm for finding the basis of a null space. Subtract row 1 from row 2:

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

Subtract row 2 from row 3 .
Add row 2 to row 1.

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The null space of A is the set of vectors

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]
$$

with

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

for some numbers x_{3} and x_{4}. Thus,

is a basis for W and $\operatorname{dim} W=2$.

