PRINT Your Name: \qquad

Quiz for October 1, 2009

Let W be a subspace of \mathbb{R}^{n} and let A be any $m \times n$ matrix. Let V be the subset of \mathbb{R}^{m} defined by

$$
V=\left\{y \in \mathbb{R}^{m} \mid y=A x \text { for some } x \text { in } W\right\}
$$

Prove that V is a subspace of \mathbb{R}^{m}.

ANSWER:

- Zero is in V. The set W is a vector space; so $0 \in W$ and $A 0=0$ is in V.
- The set V is closed under addition. Take v_{1} and v_{2} in V. The definition of V says that there are w_{1} and w_{2} in W with $v_{i}=A w_{i}$ for both i. The set W is a vector space; so W is closed under addition. Thus, $w_{1}+w_{2} \in W$ and $A\left(w_{1}+w_{2}\right)$ is in V. On the other hand $A\left(w_{1}+w_{2}\right)=A w_{1}+A w_{2}=v_{1}+v_{2}$. We have shown that $v_{1}+v_{2}$ is in V.
- The set V is closed under scalar multiplication. Take v in V and c in \mathbb{R}. The definition of V says that there is a vector w in W with $A w=v$. The set W is a vector space; so W is closed under scalar multiplication and therefore, $c w$ is in W. It follows that $A(c w)$ is in V. On the other hand, $A(c w)=c A w=c v$. We have shown that $c v$ is in V.

