Please PRINT your name _____

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 8, April 18, 2022

Yes or No. Let v_1, v_2, v_3 be vectors in \mathbb{R}^n and let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Suppose that $T(v_1), T(v_2), T(v_3)$ are linearly independent vectors in \mathbb{R}^m . Do the vectors v_1 , v_2, v_3 have to be linearly independent? If yes, prove it. If no, give an example.

Answer: <u>YES!</u> Suppose $c_1v_1 + c_2v_2 + c_3v_3 = 0$. Apply the linear transformation *T* and use the fact that *T* is a linear transformation to see that $c_1T(v_1) + c_2T(v_2) + c_3T(v_3) = 0$. The vectors $T(v_1)$, $T(v_2)$, $T(v_3)$ are linearly independent; hence, $c_1 = c_2 = c_3 = 0$ and v_1 , v_2 , v_3 are linearly independent.