\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 8, April 18, 2022

Yes or No. Let v_{1}, v_{2}, v_{3} be vectors in \mathbb{R}^{n} and let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Suppose that $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent vectors in \mathbb{R}^{m}. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, prove it. If no, give an example.
Answer: YES! Suppose $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. Apply the linear transformation T and use the fact that T is a linear transformation to see that $c_{1} T\left(v_{1}\right)+c_{2} T\left(v_{2}\right)+c_{3} T\left(v_{3}\right)=0$. The vectors $T\left(v_{1}\right), T\left(v_{2}\right), T\left(v_{3}\right)$ are linearly independent; hence, $c_{1}=c_{2}=c_{3}=0$ and v_{1}, v_{2}, v_{3} are linearly independent.

