Quiz 8 Math 544, Monday, November 9, 2020

Let U and V be finite dimensional subspaces of the vector space W. Recall that $U \cap V$ and $U+V$ are the vector spaces

$$
\begin{gathered}
U \cap V=\{w \in W \mid w \in U \text { and } w \in V\} \quad \text { and } \\
U+V=\{w \in W \mid \text { there exists } u \in U \text { and } v \in V \text { with } w=u+v\} .
\end{gathered}
$$

Give a formula which relates the following vector space dimenions $\operatorname{dim} U, \operatorname{dim} V, \operatorname{dim}(U \cap V)$ and $\operatorname{dim}(U+V)$. Give a complete and correct proof of your formula.

The formula is

$$
\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)
$$

Proof. Let w_{1}, \ldots, w_{r} be a basis for $U \cap V$. The vectors w_{1}, \ldots, w_{r} are linearly independent in the vector space U; so there are elements u_{1}, \ldots, u_{s} in U so that $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}$ is a basis for U. In a similar manner, the vectors w_{1}, \ldots, w_{r} are linearly independent in the vector space V; so there are elements v_{1}, \ldots, v_{t} in V so that $w_{1}, \ldots, w_{r}, v_{1}, \ldots, v_{t}$ is a basis for V. We will prove that the vectors

$$
\begin{equation*}
w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t} \quad \text { form a basis for } U+V \tag{1}
\end{equation*}
$$

Once we do this then

$$
\operatorname{dim}(U+V)=r+s+t, \quad \operatorname{dim} U=r+s, \quad \operatorname{dim} V=r+t, \quad \operatorname{dim}(U \cap V)=r
$$

and

$$
\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)=(r+s)+(r+t)-r=r+s+t=\operatorname{dim}(U+V)
$$

We prove (1).
It is clear that $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}$ span $U+V$. Indeed, every element of $U+V$ has the form $u+v$ for some $u \in U$ and some $v \in V$. On the other hand, u can be written in terms of $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}$ and v can be written in terms of $w_{1}, \ldots, w_{r}, v_{1}, \ldots, v_{t}$. It follows that $u+v$ can be written in terms of $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}$.

Now we prove that $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}$ are linearly independent. Suppose there are numbers a_{i}, b_{j}, and c_{k} such that

$$
\begin{equation*}
\sum_{i=1}^{r} a_{i} w_{i}+\sum_{j=1}^{s} b_{j} u_{j}+\sum_{k=1}^{t} c_{k} v_{k}=0 \tag{2}
\end{equation*}
$$

The sum

$$
\sum_{i=1}^{r} a_{i} w_{i}+\sum_{j=1}^{s} b_{j} u_{j}=-\sum_{k=1}^{t} c_{k} v_{k}
$$

is in $U \cap V$. The vectors w_{1}, \ldots, w_{r} are a basis for $U \cap V$; hence, there are numbers d_{1}, \ldots, d_{r} so that

$$
-\sum_{k=1}^{t} c_{k} v_{k}=\sum_{i=1}^{r} d_{i} w_{i}
$$

However, the vectors $w_{1}, \ldots, w_{r}, v_{1}, \ldots, v_{t}$ are linearly independent; hence, c_{1}, \ldots, c_{t} are all zero!

Now equation (2) says that

$$
\sum_{i=1}^{r} a_{i} w_{i}+\sum_{j=1}^{s} b_{j} u_{j}=0 .
$$

The vectors $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}$ are linearly independent; thus each a_{i} and each b_{j} is zero. We conclude that $w_{1}, \ldots, w_{r}, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}$ are linearly independent. The proof is complete.

