\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 7, April 13, 2022

Let U and V be finite dimensional subspaces of the vector space W.
Suppose that z_{1}, \ldots, z_{c} is a basis for $U \cap V$.
Suppose that u_{c+1}, \ldots, u_{a} are elements in U so that

$$
z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}
$$

is a basis for U.
Suppose that v_{c+1}, \ldots, v_{b} are elements in V so that

$$
z_{1}, \ldots, z_{c}, v_{c+1}, \ldots, v_{b}
$$

is a basis for V.
Prove that the elements
(1)

$$
z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}, v_{c+1}, \ldots, v_{b}
$$

of W are linearly independent.
Answer: Suppose

$$
A_{1}, \ldots, A_{c}, B_{c+1}, \ldots, B_{a}, C_{c+1}, \ldots, C_{b}
$$

are numbers with

$$
\sum_{i=1}^{c} A_{i} z_{i}+\sum_{j=c+1}^{a} B_{j} u_{j}+\sum_{k=c+1}^{b} C_{k} v_{k}=0
$$

Observe that

$$
\begin{equation*}
\sum_{i=1}^{c} A_{i} z_{i}+\sum_{j=c+1}^{a} B_{j} u_{j}=-\sum_{k=c+1}^{b} C_{k} v_{k} \tag{2}
\end{equation*}
$$

is an element of $U \cap V$. The vectors z_{1}, \ldots, z_{c} are a basis for $U \cap V$; hence there are numbers D_{1}, \ldots, D_{c} with

$$
\sum_{i=1}^{c} D_{i} z_{i}=-\sum_{k=c+1}^{b} C_{k} v_{k}
$$

However, the vectors $z_{1}, \ldots, z_{c}, v_{c+1}, \ldots, v_{b}$ are a basis for V; thus, the vectors

$$
z_{1}, \ldots, z_{c}, v_{c+1}, \ldots, v_{b}
$$

are linearly independent and $D_{1}=\ldots, D_{c}=C_{1}=\cdots=C_{b}=0$. At this point (2) reads

$$
\sum_{i=1}^{C} A_{i} z_{i}+\sum_{j=c+1}^{a} B_{j} u_{j}=0
$$

However the vectors $z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}$ are a basis for U; thus,

$$
z_{1}, \ldots, z_{c}, u_{c+1}, \ldots, u_{a}
$$

are linearly independent and

$$
A_{1}=\cdots=A_{c}=B_{c+1}=\cdots=B_{a}=0
$$

We have shown that the vectors (1) are linearly independent.

