Let

0 1	
0 1	
1 1	•
0 0	
	0 1 0 1 1 1 0 0

I applied Elementary Row Operations to obtain the matrix *B* from the matrix *A*. **Please do NOT verify this assertion.**

(a) Find a basis for the null space of *A*.

The vectors

$w_1 = \begin{bmatrix} & & \\ & & \\ & & \\ & & \end{bmatrix}$	$\begin{bmatrix} -2\\1\\0\\0\\0\\0\end{bmatrix}$,	w ₂ =	$\begin{bmatrix} -3\\0\\1\\0\\0\\0\end{bmatrix}$,	<i>w</i> ₃ =	$\begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \end{bmatrix}$	
--	--	------------------	--	---	-------------------------	---	--

are a basis for the null space of *A*.

(b) Find a basis for the column space of A.

The vectors

$$A_{*,1} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix}, \quad A_{*,4} = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \quad A_{*,5} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}$$

are a basis for the column space of A. Notice that I am writing $A_{*,j}$ for column j of the matrix A.

(c) Find a basis for the row space of *A*.

The vectors

$z_1 = [1]$	2	3	0	0	1]
$z_2 = [0]$	0	0	1	0	1]
$z_1 = \begin{bmatrix} 1 \\ z_2 = \begin{bmatrix} 0 \\ z_3 = \begin{bmatrix} 0 \end{bmatrix}$	0	0	0	1	1]

are a basis for the row space of A.

(d) Express each column of A in terms of your answer to (b).

We see that

$$A_{*,2} = 2A_{*,1}, \quad A_{*,3} = 3A_{*,1}, \quad A_{*,6} = A_{*,1} + A_{*,4} + A_{*,5}.$$

(e) Express each row of A in terms of your answer to (c).

I write $A_{i,*}$ for row *i* of *A*. We see that

$$A_{1,*} = z_1 + z_2 + z_3, A_{2,*} = 2z_1 + 2z_2 + z_3, A_{3,*} = 2z_1 + z_2 + 2z_3, A_{4,*} = 2z_1 + z_2 + z_3.$$