Quiz 7 Math 544, Monday, November 2, 2020

Let

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

I applied Elementary Row Operations to obtain the matrix B from the matrix A.

Please do NOT verify this assertion.

(a) Find a basis for the null space of A.

The vectors

$$
w_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
(b) Find a basis for the column space of A.

The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad A_{*, 4}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right], \quad A_{*, 5}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]
$$

are a basis for the column space of A. Notice that I am writing $A_{*, j}$ for column j of the matrix A.
(c) Find a basis for the row space of A.

The vectors

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 1
\end{array}\right] \\
& z_{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \\
& z_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

are a basis for the row space of A.
(d) Express each column of A in terms of your answer to (b).

We see that

$$
A_{*, 2}=2 A_{*, 1}, \quad A_{*, 3}=3 A_{*, 1}, \quad A_{*, 6}=A_{*, 1}+A_{*, 4}+A_{*, 5}
$$

(e) Express each row of A in terms of your answer to (c).

I write $A_{i, *}$ for row i of A. We see that

$$
\begin{gathered}
A_{1, *}=z_{1}+z_{2}+z_{3}, \\
A_{2, *}=2 z_{1}+2 z_{2}+z_{3}, \\
A_{3, *}=2 z_{1}+z_{2}+2 z_{3}, \\
A_{4, *}=2 z_{1}+z_{2}+z_{3} .
\end{gathered}
$$

