$\qquad$

## No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

## Quiz 6, March 28, 2022

The trace of the square matrix $A$ is the sum of the numbers on its main diagonal. Let $V$ be the set of all $3 \times 3$ matrices with trace 0 . The set $V$ is a vector space. You do NOT have to prove this. Give a basis for $V$. Prove that your proposed basis really is a basis.
Answer: The matrices

$$
\begin{gathered}
M_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right], \quad M_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right], \quad M_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
M_{4}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad M_{5}\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad M_{6}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \\
M_{7}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right], \quad M_{8}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{gathered}
$$

are are a basis for $V$.
The proposed basis in linearly independent. If $c_{1}, \ldots, c_{8}$ are numbers with $\sum_{i=1}^{8} c_{i} M_{i}$ equal to the zero matrix, then

$$
\left[\begin{array}{ccc}
c_{1}+c_{2} & c_{3} & c_{4} \\
c_{5} & -c_{1} & c_{6} \\
c_{7} & c_{8} & -c_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ;
$$

hence all eight $c$ 's are zero.
The proposed basis spans $V$. A typical element of $V$ looks like

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right],
$$

where $a_{11}+a_{22}+a_{33}=0$. Observe that

$$
A=-a_{22} M_{1}-a_{33} M_{2}+a_{12} M_{3}+a_{13} M_{4}+a_{21} M_{5}+a_{23} M_{6}+a_{31} M_{7}+a_{32} M_{8} .
$$

