\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 5, March 21, 2022
Let \mathbb{V} be a vector space; let U and V be subspaces of \mathbb{V}; and let

$$
W=\{w \in \mathbb{V} \mid w=u+v \text { for some } u \in U \text { and } v \in V\} .
$$

Is W a vector space? Justify your answer completely. Answer: This W is a vector space.
The set W is closed under addition. Take w_{1} and w_{2} from W. Well, $w_{1}=u_{1}+v_{1}$ and $w_{2}=u_{2}+v_{2}$ for some $u_{i} \in U$ and $v_{i} \in V$. We see that

$$
w_{1}+w_{2}=\left(u_{1}+v_{1}\right)+\left(u_{2}+v_{2}\right)=\left(u_{1}+u_{2}\right)+\left(v_{1}+v_{2}\right) ;
$$

furthermore, $u_{1}+u_{2} \in U$ because U is a vector space and $v_{1}+v_{2}$ is in V because V is a vector space. We conclude that $w_{1}+w_{2}$ is equal to an element of U plus an element of V; and therefore, $w_{1}+w_{2}$ is in W.

The set W is closed under scalar multiplication. Take $w_{1}=u_{1}+v_{1} \in W$, as above, and $r \in \mathbb{R}$. We see that $r w_{1}=r u_{1}+r v_{1}$. The vector space U is closed under scalar multiplication; so, $r u_{1}$ is in U. Also, $r v_{1}$ is in V again because V is a vector space. Once again $r w_{1}$ has the correct form; that is $r w_{1}$ is equal to an element of U plus an element of V; therefore, $r w_{1}$ is in W.

The zero vector in \mathbb{V} is equal to the zero vector of U plus the zero vector of V; and therefore, the zero vector is in W.

