No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 5, March 21, 2022

Let \mathbb{V} be a vector space; let *U* and *V* be subspaces of \mathbb{V} ; and let

 $W = \{ w \in \mathbb{V} \mid w = u + v \text{ for some } u \in U \text{ and } v \in V \}.$

Is W a vector space? Justify your answer completely. Answer: This W is a vector space.

The set *W* is closed under addition. Take w_1 and w_2 from *W*. Well, $w_1 = u_1 + v_1$ and $w_2 = u_2 + v_2$ for some $u_i \in U$ and $v_i \in V$. We see that

 $w_1 + w_2 = (u_1 + v_1) + (u_2 + v_2) = (u_1 + u_2) + (v_1 + v_2);$

furthermore, $u_1 + u_2 \in U$ because U is a vector space and $v_1 + v_2$ is in V because V is a vector space. We conclude that $w_1 + w_2$ is equal to an element of U plus an element of V; and therefore, $w_1 + w_2$ is in W.

The set *W* is closed under scalar multiplication. Take $w_1 = u_1 + v_1 \in W$, as above, and $r \in \mathbb{R}$. We see that $rw_1 = ru_1 + rv_1$. The vector space *U* is closed under scalar multiplication; so, ru_1 is in *U*. Also, rv_1 is in *V* again because *V* is a vector space. Once again rw_1 has the correct form; that is rw_1 is equal to an element of *U* plus an element of *V*; therefore, rw_1 is in *W*.

The zero vector in \mathbb{V} is equal to the zero vector of U plus the zero vector of V; and therefore, the zero vector is in W.