Please PRINT your name _____

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.

Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 3, February 16, 2022

Let v_1 , v_2 , and v_3 be vectors in \mathbb{R}^n and M be a nonsingular $n \times n$ matrix. Suppose the vectors v_1 , v_2 , v_3 are linearly independent. Do the vectors Mv_1 , Mv_2 , Mv_3 have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

Answer: The vectors Mv_1 , Mv_2 , Mv_3 are linearly independent.

Proof. Suppose c_1, c_2, c_3 are numbers with

$$c_1 M v_1 + c_2 M v_2 + c_3 M v_3 = 0.$$

Use the property of scalars and the fact that matrix multiplication distributes over addition to see that

$$M(c_1v_1 + c_2v_2 + c_3v_3) = 0.$$

The matrix *M* is nonsingular; hence, the only vector *w* with Mw = 0 is w = 0. Thus, $c_1v_1 + c_2v_2 + c_3v_3 = 0$. On the other hand, the vectors v_1, v_2, v_3 are linearly independent. It follows that c_1, c_2, c_3 must all be zero. We have proven that Mv_1, Mv_2, Mv_3 are linearly independent.