\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
Please take a picture of your quiz (for your records) just before you turn the quiz in. I will e-mail your grade and my comments to you. I will keep your quiz.

The quiz is worth 5 points. The solutions will be posted on my website later today.
Quiz 3, February 16, 2022
Let v_{1}, v_{2}, and v_{3} be vectors in \mathbb{R}^{n} and M be a nonsingular $n \times n$ matrix. Suppose the vectors v_{1}, v_{2}, v_{3} are linearly independent. Do the vectors $M v_{1}, M v_{2}, M v_{3}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.
Answer: The vectors $M v_{1}, M v_{2}, M v_{3}$ are linearly independent.
Proof. Suppose c_{1}, c_{2}, c_{3} are numbers with

$$
c_{1} M v_{1}+c_{2} M v_{2}+c_{3} M v_{3}=0
$$

Use the property of scalars and the fact that matrix multiplication distributes over addition to see that

$$
M\left(c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}\right)=0
$$

The matrix M is nonsingular; hence, the only vector w with $M w=0$ is $w=0$. Thus, $c_{1} v_{1}+$ $c_{2} v_{2}+c_{3} v_{3}=0$. On the other hand, the vectors v_{1}, v_{2}, v_{3} are linearly independent. It follows that c_{1}, c_{2}, c_{3} must all be zero. We have proven that $M v_{1}, M v_{2}, M v_{3}$ are linearly independent.

