Math 544, Final Exam, Solutions Fall 2009
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 200 points. There are 15 problems. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible.
No Calculators or Cell phones.

1. (13 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{s} from the vector space V are linearly independent if the only numbers c_{1}, \ldots, c_{s}, with $\sum_{i=1}^{s} c_{i} v_{i}=0$ are $c_{1}=\cdots=c_{s}=0$.
2. (13 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.

The square matrix A is non-singular if the only vector v with $A v=0$ is $v=0$.
3. (13 points) Define "basis". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{n} in the vector space V are a basis for V if v_{1}, \ldots, v_{n} span V and are linearly independent.
4. (13 points) Define "dimension". Use complete sentences. Include everything that is necessary, but nothing more.

The dimension of a vector space V is the number of vectors in a basis for V.
5. (13 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation of vector spaces with

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
4
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
5
\end{array}\right] .
$$

Find a matrix M with $T(v)=M v$ for all vectors v in \mathbb{R}^{2}. Check your answer.

We see that

$$
T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
4 \\
5
\end{array}\right]-\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

and

$$
T\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)-T\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
3 \\
4
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right] .
$$

We conclude that

$$
M=\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right]
$$

Check.

$$
\begin{aligned}
& M\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2+1 \\
3+1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4
\end{array}\right]=T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \checkmark \\
& M\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
2+2 \\
3+2
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right]=T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) \checkmark
\end{aligned}
$$

6. (13 points) Let U_{1} and U_{2} be subspaces of the vector space V. Does the union $U_{1} \cup U_{2}$ have to be a vector space? If yes, prove it. If no, give an example. (Recall that the vector u is in $U_{1} \cup U_{2}$ if u is in U_{1} OR u is in U_{2}.)

NO! Let U_{1} be the subspace of $V=\mathbb{R}^{2}$ which is spanned by $u_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and U_{2} be the subspace of V spanned by $u_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. We see that u_{1} and u_{2} are both in $U_{1} \cup U_{2}$, but $u_{1}+u_{2}$ is not in $U_{1} \cup U_{2}$.
7. (13 points) Let U_{1} and U_{2} be subspaces of the vector space V. Does the intersection $U_{1} \cap U_{2}$ have to be a vector space? If yes, prove it. If no, give an example. (Recall that the vector u is in $U_{1} \cap U_{2}$ if u is in U_{1} AND u is in U_{2}.)

YES! Let w_{1} and w_{2} both be in $U_{1} \cap U_{2}$ and c_{1} and c_{2} be real numbers. We have w_{1} and w_{2} both in the vector space U_{1} and c_{1} and c_{2} are constants; thus, $c_{1} w_{1}+c_{2} w_{2}$ is in U_{1}. Similarly, we have w_{1} and w_{2} both in the vector space U_{2} and c_{1} and c_{2} are constants; thus, $c_{1} w_{1}+c_{2} w_{2}$ is in U_{2}. Thus $c_{1} w_{1}+c_{2} w_{2}$ is in $U_{1} \cap U_{2}$ and $U_{1} \cap U_{2}$ is closed under both addition and scalar multiplication. Also, the zero vector is in both U_{1} and U_{2} so the zero vector is in $U_{1} \cap U_{2}$.
8. (13 points) Give an example of a matrix M for which $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector belonging to the eigenvalue 1 and $\left[\begin{array}{l}3 \\ 5\end{array}\right]$ is an eigenvector belonging to the eigenvalue 2. Check your answer.

We want

$$
M\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]=\left[\begin{array}{cc}
1 & 6 \\
2 & 10
\end{array}\right]
$$

Multiply by

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-5 & 3 \\
2 & -1
\end{array}\right]
$$

to see that

$$
M=\left[\begin{array}{cc}
1 & 6 \\
2 & 10
\end{array}\right]\left[\begin{array}{cc}
-5 & 3 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
7 & -3 \\
10 & -4
\end{array}\right] .
$$

Check.

$$
\begin{gathered}
M\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
7-6 \\
10-8
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \\
M\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{l}
21-15 \\
30-20
\end{array}\right]=\left[\begin{array}{c}
6 \\
10
\end{array}\right]
\end{gathered}
$$

9. (13 points) Suppose that A is a matrix with distinct eigenvalues λ_{1}, λ_{2}, and λ_{3}. Suppose further that v_{1}, v_{2}, and v_{3} are nonzero eigenvectors of A with v_{i} belonging to λ_{i}. Prove that v_{1}, v_{2}, and v_{3} are linearly independent.

Suppose c_{1}, c_{2}, c_{3} are constants with

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{Eq1}
\end{equation*}
$$

Multiply (Eq1) by A to see that

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}+c_{3} \lambda_{3} v_{3}=0 \tag{Eq2}
\end{equation*}
$$

Multiply (Eq2) by A to see that

$$
\begin{equation*}
c_{1} \lambda_{1}^{2} v_{1}+c_{2} \lambda_{2}^{2} v_{2}+c_{3} \lambda_{3}^{2} v_{3}=0 \tag{Eq3}
\end{equation*}
$$

Consider (Eq2) minus λ_{1} times (Eq1) and (Eq3) minus λ_{1}^{2} times (Eq1):

$$
\begin{equation*}
c_{2}\left(\lambda_{2}-\lambda_{1}\right) v_{2}+c_{3}\left(\lambda_{3}-\lambda_{1}\right) v_{3}=0 \tag{Eq4}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{2}\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) v_{2}+c_{3}\left(\lambda_{3}^{2}-\lambda_{1}^{2}\right) v_{3}=0 . \tag{Eq5}
\end{equation*}
$$

Observe that (Eq5) minus $\left(\lambda_{2}+\lambda_{1}\right)$ times (Eq4) is

$$
c_{3}\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right) v_{3}=0
$$

The vector v_{3} is not zero. The constant $\left(\lambda_{3}-\lambda_{1}\right)\left(\lambda_{3}-\lambda_{2}\right)$ is not zero. So the constant c_{3} must be zero. Now look at (Eq4): $c_{2}\left(\lambda_{2}-\lambda_{1}\right) v_{2}=0$. The vector $\left(\lambda_{2}-\lambda_{1}\right) v_{2}$ is not zero; so c_{2} must be zero. Now look at (Eq1): $c_{1} v_{1}=0$. The vector v_{1} is not zero; so $c_{1}=0$. We have shown that the only way for (Eq1) to happen is with all c_{i} equal to zero. We conclude that v_{1}, v_{2}, v_{3} are linearly independent.
10. (13 points) Suppose that $V \subseteq W$ are vector spaces and w_{1}, w_{2}, w_{3} is a basis for W. Suppose further that w_{1} and w_{2} are in V, but w_{3} is not in V. Do you have enough information to know the exact value of $\operatorname{dim} V$? If yes, prove it. If no, then give enough examples to show that $\operatorname{dim} V$ has not yet been determined.

We know that $\operatorname{dim} V=2$. Indeed, w_{1} and w_{2} are linearly independent vectors in V; so w_{1} and w_{2} is the beginning of a basis for V and $\operatorname{dim} V \geq 2$. The only three dimensional subspace of W is all of W. Thus, $\operatorname{dim} V \leq 2$, and indeed, $\operatorname{dim} V=2$.
11. (13 points) Suppose that $V \subseteq W$ are vector spaces and $w_{1}, w_{2}, w_{3}, w_{4}$ is a basis for W. Suppose further that w_{1} and w_{2} are in V, but neither w_{3} nor w_{4} is not in V. Do you have enough information to know the exact value of $\operatorname{dim} V$? If yes, prove it. If no, then give enough examples to show that $\operatorname{dim} V$ has not yet been determined.

NO! Let $W=\mathbb{R}^{4}$ and

$$
w_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad w_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

- In our first example we take V to be spanned by w_{1} and w_{2}. In this case, $\operatorname{dim} V=2$.
- In our second example we take V to be spanned by w_{1}, w_{2}, and $w_{3}+w_{4}$. In this case, $\operatorname{dim} V=3$ and neither w_{3} nor w_{4} is in V !

12. (13 points) Recall that \mathcal{P}_{4} is the vector space of polynomials of degree at most 4 . Let W be the following subspace of \mathcal{P}_{4} :

$$
W=\left\{p(x) \in \mathcal{P}_{4} \mid p(1)+p(-1)=0 \quad \text { and } \quad p(2)+p(-2)=0\right\} .
$$

Find a basis for W.
Every element of W has the form

$$
p(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}
$$

where

$$
\left\{\begin{array}{l}
p(1)+p(-1)=0 \\
p(2)+p(-2)=0
\end{array}\right.
$$

In other words,

$$
\left\{\begin{array}{l}
\left(a_{0}+a_{1}+a_{2}+a_{3}+a_{4}\right)+\left(a_{0}-a_{1}+a_{2}-a_{3}+a_{4}\right)=0 \\
\left(a_{0}+2 a_{1}+4 a_{2}+8 a_{3}+16 a_{4}\right)+\left(a_{0}-2 a_{1}+4 a_{2}-8 a_{3}+16 a_{4}\right)=0
\end{array}\right.
$$

In other words,

$$
\left\{\begin{array}{l}
2 a_{0}+2 a_{2}+2 a_{4}=0 \\
2 a_{0}+8 a_{2}+32 a_{4}=0
\end{array}\right.
$$

In other words,

$$
\left\{\begin{array}{l}
a_{0}+a_{2}+a_{4}=0 \\
a_{0}+4 a_{2}+16 a_{4}=0
\end{array}\right.
$$

Subtract Eq1 from Eq2 to get:

$$
\begin{aligned}
& \left\{\begin{array}{r}
a_{0}+a_{2}+a_{4}=0 \\
3 a_{2}+15 a_{4}=0
\end{array}\right. \\
& \left\{\begin{array}{r}
a_{0}+a_{2}+a_{4}=0 \\
a_{2}+5 a_{4}=0
\end{array}\right.
\end{aligned}
$$

Subtract equation 2 from Eq1:

$$
\left\{\begin{array}{l}
a_{0}-4 a_{4}=0 \\
a_{2}+5 a_{4}=0
\end{array}\right.
$$

So a_{1}, a_{3}, a_{4} are free variables and the value of a_{0} and a_{2} is determined by the value of the free variables: $a_{0}=4 a_{4}$ and $a_{2}=-5 a_{4}$. So every element of W has the form $a_{1} x+a_{3} x^{3}+a_{4}\left(4-5 x^{2}+x^{4}\right)$. The polynomials $x, x^{3}, 4-5 x^{2}+x^{4}$ span W and are linearly independent; they form a basis for W. By the way, $4-5 x^{2}+x^{4}$ vanishes at $1,-1,2,-2$.
13. (13 points) Find an orthogonal basis for the null space of $A=$ $\left[\begin{array}{llll}1 & 3 & 4 & 5\end{array}\right]$. Check your answer.

Let V be the null space of A. We start with the basis

$$
v_{1}=\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
4 \\
0 \\
-1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
5 \\
0 \\
0 \\
-1
\end{array}\right]
$$

for V. Let $u_{1}=v_{1}$. Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
4 \\
0 \\
-1 \\
0
\end{array}\right]-\frac{12}{10}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
4 \\
0 \\
-1 \\
0
\end{array}\right]-\frac{6}{5}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
2 \\
6 \\
-5 \\
0
\end{array}\right] .
$$

Let $u_{2}=5 u_{2}^{\prime}=\left[\begin{array}{c}2 \\ 6 \\ -5 \\ 0\end{array}\right]$. Be sure to check that $u_{2} \in V$ and u_{1} and u_{2} are orthogonal. Let

$$
\begin{gathered}
u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
5 \\
0 \\
0 \\
-1
\end{array}\right]-\frac{15}{10}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0
\end{array}\right]-\frac{10}{65}\left[\begin{array}{c}
2 \\
6 \\
-5 \\
0
\end{array}\right] \\
=\left[\begin{array}{c}
5 \\
0 \\
0 \\
-1
\end{array}\right]-\frac{3}{2}\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0
\end{array}\right]-\frac{2}{13}\left[\begin{array}{c}
2 \\
6 \\
-5 \\
0
\end{array}\right]=\frac{1}{26}\left[\begin{array}{c}
5 \\
15 \\
20 \\
-26
\end{array}\right] .
\end{gathered}
$$

Let $u_{3}=26 u_{3}^{\prime}=\left[\begin{array}{c}5 \\ 15 \\ 20 \\ -26\end{array}\right]$. Be sure to check that $u_{3} \in V$ and u_{3} is orthogonal
to u_{1} and u_{2} are orthogonal. We conclude that an orthogonal basis for the null space of A is

$$
u_{1}=\left[\begin{array}{c}
3 \\
-1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
2 \\
6 \\
-5 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
5 \\
15 \\
20 \\
-26
\end{array}\right]
$$

14. (13 points) Let $A=\left[\begin{array}{ll}15 & -7 \\ 14 & -6\end{array}\right]$. Find a matrix B with $B^{3}=A$. Check your answer.
We compute

$$
\operatorname{det} A-\lambda I=(15-\lambda)(-6-\lambda)+98=\lambda^{2}-9 \lambda+8=(\lambda-1)(\lambda-8) .
$$

The eigenvectors that belong to $\lambda=1$ are in the null space of $\left[\begin{array}{cc}14 & -7 \\ 14 & -7\end{array}\right]$. One such vector is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The eigenvectors that belong to $\lambda=8$ are in the null space of $\left[\begin{array}{cc}7 & -7 \\ 14 & -14\end{array}\right]$. One such vector is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. So, we have

$$
A\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 8
\end{array}\right] .
$$

We notice that the inverse of $\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]$ is $\left[\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right]$. We take

$$
B=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right]=\left[\begin{array}{cc}
3 & -1 \\
2 & 0
\end{array}\right]
$$

Check. We compute

$$
B^{3}=\left[\begin{array}{cc}
3 & -1 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
7 & -3 \\
6 & -2
\end{array}\right]=\left[\begin{array}{cc}
15 & -7 \\
14 & -6
\end{array}\right] \checkmark
$$

15. (18 points) Check your answers. Let A be the matrix

$$
A=\left[\begin{array}{cccccc}
1 & 4 & 1 & 5 & 1 & 13 \\
1 & 4 & 2 & 5 & 2 & 20 \\
2 & 8 & 3 & 10 & 3 & 33
\end{array}\right]
$$

The row operations $R 2-R 1$ and $R 3-2 R 1$ yield:

$$
\left[\begin{array}{cccccc}
1 & 4 & 1 & 5 & 1 & 13 \\
0 & 0 & 1 & 0 & 1 & 7 \\
0 & 0 & 1 & 0 & 1 & 7
\end{array}\right]
$$

The row operations $R 1-R 2$ and $R 3-R 2$ yield:

$$
\left[\begin{array}{llllll}
1 & 4 & 0 & 5 & 0 & 6 \\
0 & 0 & 1 & 0 & 1 & 7 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find a basis for the null space of A.

The null space of A is the set of vectors of the form

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right] x_{6}\left[\begin{array}{c}
-6 \\
0 \\
-7 \\
0 \\
0 \\
1
\end{array}\right]
$$

where x_{2}, x_{4}, x_{5}, and x_{6} are arbitrary. Thus, the vectors

$$
\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
0 \\
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
-6 \\
0 \\
-7 \\
0 \\
0 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
(b) Find a basis for the column space of A.

In the reduced matrix, the leading ones appear in columns 1 and 3 ; so a basis for the column space of A is columns 1 and 3 from A :

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

(c) Find a basis for the row space of A.

The non-zero rows of the reduced matrix form a basis for the row space of A :

$$
u_{1}=\left[\begin{array}{llllll}
1 & 4 & 0 & 5 & 0 & 6
\end{array}\right] \quad \text { and } \quad u_{2}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 1 & 7
\end{array}\right] .
$$

(d) Write each column of A as a linear combination of your answer to (b).

Let C_{i} be the $i^{\text {th }}$ column of A. Observe that

$$
C_{1}=v_{1}, \quad C_{2}=4 v_{1}, \quad C_{3}=v_{2}, \quad C_{4}=5 v_{1}, \quad C_{5}=v_{2}, \quad \text { and } \quad C_{6}=6 v_{1}+7 v_{2} .
$$

(e) Write each row of A as a linear combination of your answer to (c).

Let R_{i} be the $i^{\text {th }}$ row of A. Observe that

$$
R_{1}=1 u_{1}+1 u_{2}, \quad R_{2}=1 u_{1}+2 u_{2}, \quad \text { and } \quad R_{3}=2 u_{2}+3 u_{2} .
$$

