Math 544, Final Exam, Solutions Fall 2009

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: turn the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 200 points. There are 15 problems. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators or Cell phones.**

1. (13 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_1, \ldots, v_s from the vector space V are *linearly independent* if the only numbers c_1, \ldots, c_s , with $\sum_{i=1}^s c_i v_i = 0$ are $c_1 = \cdots = c_s = 0$.

2. (13 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.

The square matrix A is non-singular if the only vector v with Av = 0 is v = 0.

3. (13 points) Define "basis". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_1, \ldots, v_n in the vector space V are a basis for V if v_1, \ldots, v_n span V and are linearly independent.

4. (13 points) Define "dimension". Use complete sentences. Include everything that is necessary, but nothing more.

The dimension of a vector space V is the number of vectors in a basis for V.

5. (13 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation of vector spaces with

$$T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix}$$
 and $T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}4\\5\end{bmatrix}$.

Find a matrix M with T(v) = Mv for all vectors v in \mathbb{R}^2 . Check your answer.

We see that

$$T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\2\end{bmatrix} - \begin{bmatrix}1\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) - T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}4\\5\end{bmatrix} - \begin{bmatrix}3\\4\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix}$$

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\1\end{bmatrix} - \begin{bmatrix}0\\1\end{bmatrix}\right) = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) - T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}3\\4\end{bmatrix} - \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2\\3\end{bmatrix}.$$

We conclude that

$$M = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$$

Check.

$$M\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}2+1\\3+1\end{bmatrix} = \begin{bmatrix}3\\4\end{bmatrix} = T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) \checkmark$$
$$M\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}2+2\\3+2\end{bmatrix} = \begin{bmatrix}4\\5\end{bmatrix} = T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) \checkmark$$

6. (13 points) Let U_1 and U_2 be subspaces of the vector space V. Does the union $U_1 \cup U_2$ have to be a vector space? If yes, prove it. If no, give an example. (Recall that the vector u is in $U_1 \cup U_2$ if u is in U_1 OR u is in U_2 .)

NO! Let U_1 be the subspace of $V = \mathbb{R}^2$ which is spanned by $u_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and U_2 be the subspace of V spanned by $u_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. We see that u_1 and u_2 are both in $U_1 \cup U_2$, but $u_1 + u_2$ is not in $U_1 \cup U_2$.

7. (13 points) Let U_1 and U_2 be subspaces of the vector space V. Does the intersection $U_1 \cap U_2$ have to be a vector space? If yes, prove it. If no, give an example. (Recall that the vector u is in $U_1 \cap U_2$ if u is in U_1 AND u is in U_2 .)

YES! Let w_1 and w_2 both be in $U_1 \cap U_2$ and c_1 and c_2 be real numbers. We have w_1 and w_2 both in the vector space U_1 and c_1 and c_2 are constants; thus, $c_1w_1 + c_2w_2$ is in U_1 . Similarly, we have w_1 and w_2 both in the vector space U_2 and c_1 and c_2 are constants; thus, $c_1w_1 + c_2w_2$ is in U_2 . Thus $c_1w_1 + c_2w_2$ is in $U_1 \cap U_2$ and $U_1 \cap U_2$ is closed under both addition and scalar multiplication. Also, the zero vector is in both U_1 and U_2 so the zero vector is in $U_1 \cap U_2$.

8. (13 points) Give an example of a matrix M for which $\begin{bmatrix} 1\\2 \end{bmatrix}$ is an eigenvector belonging to the eigenvalue 1 and $\begin{bmatrix} 3\\5 \end{bmatrix}$ is an eigenvector belonging to the eigenvalue 2. Check your answer.

We want

$$M\begin{bmatrix}1 & 3\\2 & 5\end{bmatrix} = \begin{bmatrix}1 & 6\\2 & 10\end{bmatrix}.$$

Multiply by

$$\begin{bmatrix} 1 & 3 \\ 2 & 5 \end{bmatrix}^{-1} = \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix}$$

to see that

$$M = \begin{bmatrix} 1 & 6 \\ 2 & 10 \end{bmatrix} \begin{bmatrix} -5 & 3 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ 10 & -4 \end{bmatrix}.$$

Check.

$$M\begin{bmatrix}1\\2\end{bmatrix} = \begin{bmatrix}7-6\\10-8\end{bmatrix} = \begin{bmatrix}1\\2\end{bmatrix} \checkmark$$
$$M\begin{bmatrix}3\\5\end{bmatrix} = \begin{bmatrix}21-15\\30-20\end{bmatrix} = \begin{bmatrix}6\\10\end{bmatrix} \checkmark$$

9. (13 points) Suppose that A is a matrix with distinct eigenvalues λ_1 , λ_2 , and λ_3 . Suppose further that v_1 , v_2 , and v_3 are nonzero eigenvectors of A with v_i belonging to λ_i . Prove that v_1 , v_2 , and v_3 are linearly independent.

Suppose c_1, c_2, c_3 are constants with

(Eq1)
$$c_1v_1 + c_2v_2 + c_3v_3 = 0.$$

Multiply (Eq1) by A to see that

(Eq2)
$$c_1\lambda_1v_1 + c_2\lambda_2v_2 + c_3\lambda_3v_3 = 0$$

Multiply (Eq2) by A to see that

(Eq3)
$$c_1\lambda_1^2v_1 + c_2\lambda_2^2v_2 + c_3\lambda_3^2v_3 = 0$$

Consider (Eq2) minus λ_1 times (Eq1) and (Eq3) minus λ_1^2 times (Eq1):

(Eq4)
$$c_2(\lambda_2 - \lambda_1)v_2 + c_3(\lambda_3 - \lambda_1)v_3 = 0$$

and

(Eq5)
$$c_2(\lambda_2^2 - \lambda_1^2)v_2 + c_3(\lambda_3^2 - \lambda_1^2)v_3 = 0.$$

Observe that (Eq5) minus $(\lambda_2 + \lambda_1)$ times (Eq4) is

$$c_3(\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)v_3 = 0.$$

The vector v_3 is not zero. The constant $(\lambda_3 - \lambda_1)(\lambda_3 - \lambda_2)$ is not zero. So the constant c_3 must be zero. Now look at (Eq4): $c_2(\lambda_2 - \lambda_1)v_2 = 0$. The vector $(\lambda_2 - \lambda_1)v_2$ is not zero; so c_2 must be zero. Now look at (Eq1): $c_1v_1 = 0$. The vector v_1 is not zero; so $c_1 = 0$. We have shown that the only way for (Eq1) to happen is with all c_i equal to zero. We conclude that v_1, v_2, v_3 are linearly independent.

10. (13 points) Suppose that $V \subseteq W$ are vector spaces and w_1, w_2, w_3 is a basis for W. Suppose further that w_1 and w_2 are in V, but w_3 is not in V. Do you have enough information to know the exact value of dim V? If yes, prove it. If no, then give enough examples to show that dim V has not yet been determined.

We know that dim V = 2. Indeed, w_1 and w_2 are linearly independent vectors in V; so w_1 and w_2 is the beginning of a basis for V and dim $V \ge 2$. The only three dimensional subspace of W is all of W. Thus, dim $V \le 2$, and indeed, dim V = 2.

11. (13 points) Suppose that $V \subseteq W$ are vector spaces and w_1, w_2, w_3, w_4 is a basis for W. Suppose further that w_1 and w_2 are in V, but neither w_3 nor w_4 is not in V. Do you have enough information to know the exact value of dim V? If yes, prove it. If no, then give enough examples to show that dim V has not yet been determined.

NO! Let $W = \mathbb{R}^4$ and

$$w_1 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \quad w_2 = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \quad w_3 = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}, \quad w_4 = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$$

• In our first example we take V to be spanned by w_1 and w_2 . In this case, $\dim V = 2$.

• In our second example we take V to be spanned by w_1 , w_2 , and $w_3 + w_4$. In this case, dim V = 3 and neither w_3 nor w_4 is in V!

12. (13 points) Recall that \mathcal{P}_4 is the vector space of polynomials of degree at most 4. Let W be the following subspace of \mathcal{P}_4 :

$$W = \{ p(x) \in \mathcal{P}_4 \mid p(1) + p(-1) = 0 \text{ and } p(2) + p(-2) = 0 \}$$

Find a basis for W.

Every element of W has the form

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

where

$$\begin{cases} p(1) + p(-1) = 0\\ p(2) + p(-2) = 0 \end{cases}$$

In other words,

$$\begin{cases} (a_0 + a_1 + a_2 + a_3 + a_4) + (a_0 - a_1 + a_2 - a_3 + a_4) = 0\\ (a_0 + 2a_1 + 4a_2 + 8a_3 + 16a_4) + (a_0 - 2a_1 + 4a_2 - 8a_3 + 16a_4) = 0 \end{cases}$$

In other words,

$$\begin{cases} 2a_0 + 2a_2 + 2a_4 = 0\\ 2a_0 + 8a_2 + 32a_4 = 0 \end{cases}$$

In other words,

$$\begin{cases} a_0 + a_2 + a_4 = 0\\ a_0 + 4a_2 + 16a_4 = 0 \end{cases}$$

Subtract Eq1 from Eq2 to get:

$$\begin{cases} a_0 + a_2 + a_4 = 0\\ 3a_2 + 15a_4 = 0 \end{cases}$$
$$\begin{cases} a_0 + a_2 + a_4 = 0\\ a_2 + 5a_4 = 0 \end{cases}$$

Subtract equation 2 from Eq1:

$$\begin{cases} a_0 - 4a_4 = 0\\ a_2 + 5a_4 = 0 \end{cases}$$

So a_1, a_3, a_4 are free variables and the value of a_0 and a_2 is determined by the value of the free variables: $a_0 = 4a_4$ and $a_2 = -5a_4$. So every element of W has the form $a_1x + a_3x^3 + a_4(4 - 5x^2 + x^4)$. The polynomials $x, x^3, 4 - 5x^2 + x^4$ span W and are linearly independent; they form a basis for W. By the way, $4 - 5x^2 + x^4$ vanishes at 1, -1, 2, -2.

13. (13 points) Find an orthogonal basis for the null space of A = $\begin{bmatrix} 1 & 3 & 4 & 5 \end{bmatrix}$. Check your answer.

Let V be the null space of A. We start with the basis

$$v_{1} = \begin{bmatrix} 3\\ -1\\ 0\\ 0 \end{bmatrix}, \quad v_{2} = \begin{bmatrix} 4\\ 0\\ -1\\ 0 \end{bmatrix}, \quad v_{3} = \begin{bmatrix} 5\\ 0\\ 0\\ -1 \end{bmatrix}$$

for V. Let $u_1 = v_1$. Let

$$u_{2}' = v_{2} - \frac{u_{1}^{\mathrm{T}}v_{2}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} = \begin{bmatrix} 4\\0\\-1\\0\end{bmatrix} - \frac{12}{10}\begin{bmatrix} 3\\-1\\0\\0\end{bmatrix} = \begin{bmatrix} 4\\0\\-1\\0\end{bmatrix} - \frac{6}{5}\begin{bmatrix} 3\\-1\\0\\0\end{bmatrix} = \frac{1}{5}\begin{bmatrix} 2\\6\\-5\\0\end{bmatrix}.$$

Let $u_2 = 5u'_2 = \begin{bmatrix} 2\\ 6\\ -5\\ 0 \end{bmatrix}$. Be sure to check that $u_2 \in V$ and u_1 and u_2 are

orthogonal. Let

Let u_3

$$u_{3}' = v_{3} - \frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1} - \frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2} = \begin{bmatrix} 5\\0\\0\\-1 \end{bmatrix} - \frac{15}{10} \begin{bmatrix} 3\\-1\\0\\0 \end{bmatrix} - \frac{10}{65} \begin{bmatrix} 2\\6\\-5\\0 \end{bmatrix}$$
$$= \begin{bmatrix} 5\\0\\-1 \end{bmatrix} - \frac{3}{2} \begin{bmatrix} 3\\-1\\0\\0 \end{bmatrix} - \frac{2}{13} \begin{bmatrix} 2\\6\\-5\\0 \end{bmatrix} = \frac{1}{26} \begin{bmatrix} 5\\15\\20\\-26 \end{bmatrix}.$$
$$= 26u_{3}' = \begin{bmatrix} 5\\15\\20\\-26 \end{bmatrix}.$$
 Be sure to check that $u_{3} \in V$ and u_{3} is orthogonal

to u_1 and u_2 are orthogonal. We conclude that an orthogonal basis for the null space of A is

$$u_1 = \begin{bmatrix} 3\\ -1\\ 0\\ 0 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 2\\ 6\\ -5\\ 0 \end{bmatrix}, \quad u_3 = \begin{bmatrix} 5\\ 15\\ 20\\ -26 \end{bmatrix}.$$

14. (13 points) Let $A = \begin{bmatrix} 15 & -7 \\ 14 & -6 \end{bmatrix}$. Find a matrix B with $B^3 = A$. Check your answer.

We compute

$$\det A - \lambda I = (15 - \lambda)(-6 - \lambda) + 98 = \lambda^2 - 9\lambda + 8 = (\lambda - 1)(\lambda - 8).$$

The eigenvectors that belong to $\lambda = 1$ are in the null space of $\begin{bmatrix} 14 & -7 \\ 14 & -7 \end{bmatrix}$. One such vector is $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. The eigenvectors that belong to $\lambda = 8$ are in the null space of $\begin{bmatrix} 7 & -7 \\ 14 & -14 \end{bmatrix}$. One such vector is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. So, we have $A \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 8 \end{bmatrix}$.

We notice that the inverse of $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ is $\begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$. We take

$$B = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix}$$

Check. We compute

$$B^{3} = \begin{bmatrix} 3 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 7 & -3 \\ 6 & -2 \end{bmatrix} = \begin{bmatrix} 15 & -7 \\ 14 & -6 \end{bmatrix} \checkmark$$

15. (18 points) Check your answers. Let A be the matrix

$$A = \begin{bmatrix} 1 & 4 & 1 & 5 & 1 & 13 \\ 1 & 4 & 2 & 5 & 2 & 20 \\ 2 & 8 & 3 & 10 & 3 & 33 \end{bmatrix}$$

The row operations R2 - R1 and R3 - 2R1 yield:

$$\begin{bmatrix} 1 & 4 & 1 & 5 & 1 & 13 \\ 0 & 0 & 1 & 0 & 1 & 7 \\ 0 & 0 & 1 & 0 & 1 & 7 \end{bmatrix}$$

The row operations R1 - R2 and R3 - R2 yield:

$$\begin{bmatrix} 1 & 4 & 0 & 5 & 0 & 6 \\ 0 & 0 & 1 & 0 & 1 & 7 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

(a) Find a basis for the null space of A.

The null space of A is the set of vectors of the form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = x_2 \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -5 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 0 \\ -1 \\ 0 \\ 1 \\ 0 \end{bmatrix} x_6 \begin{bmatrix} -6 \\ 0 \\ -7 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

where x_2, x_4, x_5 , and x_6 are arbitrary. Thus, the vectors

$\begin{bmatrix} -4\\1\\0\\0\\0\\0\end{bmatrix},$	$\begin{bmatrix} -5\\0\\0\\1\\0\\0\end{bmatrix},$	$\begin{bmatrix} 0\\0\\-1\\0\\1\\0\end{bmatrix}$	and	$\begin{bmatrix} -6\\0\\-7\\0\\0\\1\end{bmatrix}$
---	---	--	-----	---

are a basis for the null space of A.

(b) Find a basis for the column space of A.

In the reduced matrix, the leading ones appear in columns 1 and 3; so a basis for the column space of A is columns 1 and 3 from A:

	[1]			[1]	
$v_1 =$	1	and	$v_2 =$	2	
	2			3	

(c) Find a basis for the row space of A.

The non-zero rows of the reduced matrix form a basis for the row space of A:

 $u_1 = \begin{bmatrix} 1 & 4 & 0 & 5 & 0 & 6 \end{bmatrix}$ and $u_2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 7 \end{bmatrix}$.

(d) Write each column of A as a linear combination of your answer to (b).

Let C_i be the i^{th} column of A. Observe that

 $C_1 = v_1, \quad C_2 = 4v_1, \quad C_3 = v_2, \quad C_4 = 5v_1, \quad C_5 = v_2, \text{ and } C_6 = 6v_1 + 7v_2.$

(e) Write each row of A as a linear combination of your answer to (c). Let R_i be the i^{th} row of A. Observe that

 $R_1 = 1u_1 + 1u_2$, $R_2 = 1u_1 + 2u_2$, and $R_3 = 2u_2 + 3u_2$.