11. (15 points) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE.
(a) If A and B are 2×2 matrcies, then the null space of B is contained in the null space of $A B$.
(b) If A and B are 2×2 matrcies, then the null space of B is contained in the null space of $B A$.
Statement (a) is TRUE. Take v in the null space of B. So, $B v=0$. It follows that $A B v=0$ and v is in the null space of $A B$.
Statement (b) is FALSE. Suppose $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Observe that $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in the nullspace of B; but v is not in the null space of $B A$ because $B v=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ and $B A v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
12. (10 points) Let A be matrix. Suppose that v_{1} and v_{2} are non-zero vectors and λ_{1} and λ_{2} are numbers with $A v_{1}=\lambda_{1} v_{1}, A v_{2}=\lambda_{2} v_{2}$, and $\lambda_{1} \neq \lambda_{2}$. PROVE that v_{1} and v_{2} are linearly independent.
Suppose

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=0 \tag{*}
\end{equation*}
$$

for some numbers c_{1} and c_{2}. Multiply $\left(^{*}\right)$ by A to see that

$$
c_{1} A v_{1}+c_{2} A v_{2}=0
$$

hence

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}=0 \tag{**}
\end{equation*}
$$

Multiply (*) by λ_{1} to see

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{1} v_{2}=0 \tag{***}
\end{equation*}
$$

Subtract $\left({ }^{* * *}\right)$ from $\left({ }^{* *}\right)$ to see

$$
c_{2}\left(\lambda_{2}-\lambda_{1}\right) v_{2}=0
$$

We know that $\lambda_{2}-\lambda_{1}$ is a non-zero number and v_{2} is a non-zero vector, so c_{2} must be zero. Look at $\left(^{*}\right)$ to see that $c_{1} v_{1}=0$, but v_{1} is a non-zero vector. We conclude that c_{1} and c_{2} must be zero; hence, v_{1} and v_{2} are linearly independent.
13. (10 points) Let T be the linear transformation of \mathbb{R}^{2} which fixes the origin, but rotates the plane in the counter clockwise direction by $\pi / 4$ radians. Find the matrix M with $T(v)=M v$ for all $v \in \mathbb{R}^{2}$.

$$
M=\left[\begin{array}{cc}
\cos (\pi / 4) & -\sin (\pi / 4) \\
\sin (\pi / 4) & \cos (\pi / 4)
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\
\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}
\end{array}\right]
$$

