Math 544, Final Exam, Fall 2006

Write your answers as legibly as you can on the blank sheets of paper provided.
Please leave room in the upper left corner for the staple.
Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 11 problems. The exam is worth a total of 100 points.
SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators or Cell phones.
I will post the solutions on my website sometime this afternoon.
If I know your e-mail address, I will e-mail your grade to you as soon as I have graded the exam. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

1. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.
The vectors v_{1}, \ldots, v_{r} in the vector space V are linearly independent if the only numbers c_{1}, \ldots, c_{r}, with $\sum_{i=1}^{r} c_{i} v_{i}=0$, are $c_{1}=\cdots=c_{r}=0$.
2. (7 points) Define "span". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors $v_{1}, v_{2}, \ldots, v_{n}$ in the vector space $V \operatorname{span} V$ if every vector in V is equal to a linear combination of $v_{1}, v_{2}, \ldots, v_{n}$.
3. (7 points) Define "basis". Use complete sentences. Include everything that is necessary, but nothing more.

A basis for the vector space V is a set of vectors in V which span V and are linearly independent.
4. (12 points) Let $A=\left[\begin{array}{cc}3 & 5 \\ -1 & -\frac{3}{2}\end{array}\right]$. Find $\lim _{n \rightarrow \infty} A^{n}$.

You must compute the eigenvalues 1 and $\frac{1}{2}$ for A. Observe that $v_{1}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$ is an eigenvector of A which belongs to $\lambda=1$ because

$$
A v_{1}=\left[\begin{array}{cc}
3 & 5 \\
-1 & -\frac{3}{2}
\end{array}\right]\left[\begin{array}{c}
5 \\
-2
\end{array}\right]=\left[\begin{array}{c}
15-10 \\
-5+3
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2
\end{array}\right]=v_{1}
$$

Observe that $v_{2}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ is an eigenvector of A which belongs to $\lambda=\frac{1}{2}$ because

$$
A v_{2}=\left[\begin{array}{cc}
3 & 5 \\
-1 & -\frac{3}{2}
\end{array}\right]\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
-6+5 \\
2-\frac{3}{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
\frac{1}{2}
\end{array}\right]=\frac{1}{2} v_{2}
$$

Thus, we know $A S=S D$, where

$$
S=\left[\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right] .
$$

It is easy to see that

$$
S^{-1}=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]
$$

and $A=S D S^{-1}$. We see that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} A^{n}=\lim _{n \rightarrow \infty}\left(S D S^{-1}\right)^{n}=S\left(\lim _{n \rightarrow \infty} D^{n}\right) S^{-1}=S\left(\lim _{n \rightarrow \infty}\left[\begin{array}{cc}
1^{n} & 0 \\
0 & (1 / 2)^{n}
\end{array}\right]\right) S^{-1} \\
= & S\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S^{-1}=\left[\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]=\left[\begin{array}{cc}
5 & 0 \\
-2 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
2 & 5
\end{array}\right]=\left[\begin{array}{cc}
5 & 10 \\
-2 & -4
\end{array}\right]
\end{aligned}
$$

5. (13 points) Let W be the subspace of \mathbb{R}^{4} which is spanned by

$$
w_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad w_{2}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right], \quad \text { and } \quad w_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Find an orthogonal basis for W.
Let $u_{1}=w_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$. Let

$$
u_{2}^{\prime}=w_{2}-\frac{u_{1}^{\mathrm{T}} w_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]-\frac{3}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{3}{4} \\
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]
$$

Let $u_{2}=4 u_{2}^{\prime}=\left[\begin{array}{c}-3 \\ 1 \\ 1 \\ 1\end{array}\right]$. Let

$$
u_{3}^{\prime}=w_{3}-\frac{u_{1}^{\mathrm{T}} w_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} w_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]-\frac{2}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{2}{12}\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

Let $u_{3}=3 u_{3}^{\prime}=\left[\begin{array}{c}0 \\ -2 \\ 1 \\ 1\end{array}\right]$. Our orthogonal basis for W is

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-3 \\
1 \\
1 \\
1
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
0 \\
-2 \\
1 \\
1
\end{array}\right]
$$

6. (13 points) Let

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 0 & 2 & -1 \\
3 & 12 & 1 & 5 & 5 \\
2 & 8 & 1 & 3 & 2 \\
5 & 20 & 2 & 8 & 8
\end{array}\right], \quad \text { and } \quad b=\left[\begin{array}{c}
-2 \\
20 \\
10 \\
33
\end{array}\right]
$$

(a) Find the general solution of $A x=b$. List three specific solutions, if possible. Check your solutions.

We apply row operations to the augmented matrix

$$
\left[\begin{array}{cccccc}
1 & 4 & 0 & 2 & -1 & -2 \\
3 & 12 & 1 & 5 & 5 & 20 \\
2 & 8 & 1 & 3 & 2 & 10 \\
5 & 20 & 2 & 8 & 8 & 33
\end{array}\right]
$$

Replace row 2 by row 2 minus 3 row 1.
Replace row 3 by row 3 minus 2 row 1.
Replace row 4 by row 4 minus 5 row 1 to get

$$
\left[\begin{array}{cccccc}
1 & 4 & 0 & 2 & -1 & -2 \\
0 & 0 & 1 & -1 & 8 & 26 \\
0 & 0 & 1 & -1 & 4 & 14 \\
0 & 0 & 2 & -2 & 13 & 43
\end{array}\right]
$$

Replace row 3 by row 3 minus row 2.
Replace row 4 by row 4 minus 2 row 2 .

$$
\left[\begin{array}{cccccc}
1 & 4 & 0 & 2 & -1 & -2 \\
0 & 0 & 1 & -1 & 8 & 26 \\
0 & 0 & 0 & 0 & -4 & -12 \\
0 & 0 & 0 & 0 & -3 & -9
\end{array}\right]
$$

Divide row 3 by -4 . Divide row 4 by -3 .

$$
\left[\begin{array}{cccccc}
1 & 4 & 0 & 2 & -1 & -2 \\
0 & 0 & 1 & -1 & 8 & 26 \\
0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 1 & 3
\end{array}\right]
$$

Replace row 2 by row 2 minus 8 times row 3. Replace row 1 by row 1 plus row 3. Replace row 4 by row 4 minus row 3 .

$$
\left[\begin{array}{cccccc}
1 & 4 & 0 & 2 & 0 & 1 \\
0 & 0 & 1 & -1 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The general solution of the system of equations is

$$
\begin{array}{|cccc|}
\hline x_{1}= & 1 & -4 x_{2} & -2 x_{4} \\
x_{2}= & & x_{2} & \\
x_{3}= & 2 & & +x_{4} \\
x_{4}= & & & x_{4} \\
x_{5}= & 3 & & \\
\hline
\end{array}
$$

Three specific solutions are

$\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 0 \\ 3\end{array}\right], \quad\left[\begin{array}{c}-3 \\ 1 \\ 2 \\ 0 \\ 3\end{array}\right], \quad\left[\begin{array}{c}-1 \\ 0 \\ 3 \\ 1 \\ 3\end{array}\right]$.

(b) Find a basis for the null space of A.

$$
\begin{gathered}
{\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{c}
-2 \\
0 \\
1 \\
1 \\
0
\end{array}\right]} \\
\hline
\end{gathered}
$$

(c) Find a basis for the column space of A.

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
3 \\
2 \\
5
\end{array}\right], \quad A_{*, 3}=\left[\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right], \quad A_{*, 5}=\left[\begin{array}{c}
-1 \\
5 \\
2 \\
8
\end{array}\right]
$$

(d) Find a basis for the row space of A.

$$
\begin{array}{|c}
\hline w_{1}=\left[\begin{array}{lllll}
1 & 4 & 0 & 2 & 0
\end{array}\right] \\
w_{2}=\left[\begin{array}{lllll}
0 & 0 & 1 & -1 & 0
\end{array}\right] \\
w_{3}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right] \\
\hline
\end{array}
$$

(e) Express each column of A in terms of your answer to (c).

$$
A_{*, 2}=4 A_{*, 1}, \quad A_{*, 4}=2 A_{*, 1}-A *, 3 .
$$

(f) Express each row of A in terms of your answer to (d).

$$
\begin{gathered}
A_{1, *}=w_{1}-w_{3}, \quad A_{2,0}=3 w_{1}+w_{2}+5 w_{3}, \\
A_{3, *}=2 w_{1}+w_{2}+2 w_{3}, \quad A_{4, *}=5 w_{1}+2 w_{2}+8 w_{3} . \\
\hline
\end{gathered}
$$

7. (7 points) Let $T: V \rightarrow W$ be a linear transformation of finite dimensional vector spaces. Let w_{1}, \ldots, w_{r} in W be a basis for the image of T. Let v_{1}, \ldots, v_{r} be vectors in V with $T\left(v_{i}\right)=w_{i}$, for $1 \leq i \leq r$. Let u_{1}, \ldots, u_{s} in V be a basis for the null space of T. Prove that $v_{1}, \ldots, v_{r}, u_{1}, \ldots, u_{s}$ is a basis for V.

We first show linear independence. Suppose that a_{i} and b_{j} are numbers with

$$
\begin{equation*}
\sum_{i=1}^{r} a_{i} v_{i}+\sum_{j=1}^{s} b_{j} u_{j}=0 \tag{}
\end{equation*}
$$

Apply the linear transformation T to see that

$$
\sum_{i=1}^{r} a_{i} w_{i}=0 .
$$

The vectors w_{1}, \ldots, w_{r} are linearly independent, so each a_{i} must be zero, Now $\left.{ }^{*}\right)$ tells us that

$$
\sum_{j=1}^{s} b_{j} u_{j}=0 .
$$

The vectors u_{1}, \ldots, u_{s} are linearly independent so each b_{j} must also be zero.
Now we show that $v_{1}, \ldots, v_{r}, u_{1}, \ldots, u_{s}$ span V. Take $v \in V$. The vector $T(v)$ is in the image of T, so there are numbers a_{1}, \ldots, a_{r} with $T(v)=\sum_{i=1}^{r} a_{i} w_{i}$. Of course $w_{i}=T\left(v_{i}\right)$. It follows that $v-\sum_{i=1}^{r} a_{i} v_{i}$ is in the null space of T that is, $v-\sum_{i=1}^{r} a_{i} v_{i}$ may be written as a linear combination of u_{1}, \ldots, u_{s}. In other words, v may be written as a linear combination of $v_{1}, \ldots, v_{r}, u_{1}, \ldots, u_{s}$, and the proof is complete.
8. (7 points) Let V be a vector space and let $T: V \rightarrow V$ be a linear transformation. Suppose that v_{1}, v_{2}, v_{3} are non-zero vectors in V which are eigenvectors which belong to three distinct eigenvalues λ_{1}, λ_{2}, λ_{3}, respectively. Prove that v_{1}, v_{2}, v_{3} are linearly independent.
We first show that v_{1} and v_{2} are linearly independent. Suppose a_{1} and a_{2} are numbers with

$$
\begin{equation*}
a_{1} v_{1}+a_{2} v_{2}=0 \tag{**}
\end{equation*}
$$

Multiply (${ }^{* *}$) by λ_{1} to get

$$
a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{1} v_{2}=0 .
$$

Multiply $\left({ }^{* *}\right)$ by A to get

$$
a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{2} v_{2}=0 .
$$

Subtract to learn that $a_{2}\left(\lambda_{2}-\lambda_{1}\right) v_{2}=0$. The vector v_{2} is not zero. The number $\lambda_{2}-\lambda_{1}$ is not zero; so, the number a_{2} must be zero. Look back at $\left({ }^{* *}\right)$ to see that a_{1} must also be zero.

Now we deal with all three vectors. Suppose a_{1}, a_{2}, and a_{3} are numbers with

$$
\begin{equation*}
a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0 \tag{***}
\end{equation*}
$$

Multiply $\left({ }^{* * *}\right)$ by λ_{3} to see

$$
a_{1} \lambda_{3} v_{1}+a_{2} \lambda_{3} v_{2}+a_{3} \lambda_{3} v_{3}=0
$$

Multiply (${ }^{* * *}$) by A to see

$$
a_{1} \lambda_{1} v_{1}+a_{2} \lambda_{2} v_{2}+a_{3} \lambda_{3} v_{3}=0
$$

Subtract to learn that

$$
a_{1}\left(\lambda_{1}-\lambda_{3}\right) v_{1}+a_{2}\left(\lambda_{2}-\lambda_{3}\right) v_{2}=0
$$

We already showed that v_{1} and v_{2} are linearly independent; so, $a_{1}\left(\lambda_{1}-\lambda_{3}\right)=0$ and $a_{2}\left(\lambda_{2}-\lambda_{3}\right)=0$. The numbers $\lambda_{2}-\lambda_{3}$ and $\lambda_{1}-\lambda_{3}$ are not zero; hence a_{1} and a_{2} must be zero. Look back at $\left({ }^{\left({ }^{* * *}\right)}\right.$) to see that a_{3} must also be zero.
9. (7 points) Is the the determinant function from the vector space of 2×2 matrices to \mathbb{R} a linear transformation? Explain thoroughly.
NO. The determinant of $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ plus the determinant of $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ is zero plus zero which is zero. On the other hand if I add the matrices first and then take the determinant I get the determinant of $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, which is 1 .
10. (7 points) Recall that $\mathbb{R}[x]$ is the vector space of polynomials in one variable x with real number coefficients. Consider the function $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$, which is given by $T(f)=x^{2} f$ for each polynomial $f \in \mathbb{R}[x]$. Is T a linear transformation? Explain thoroughly.

Yes. If f and g are polynomials, then

$$
T(f+g)=x^{2}(f+g)=x^{2} f+x^{2} g=T(f+T(g) .
$$

If c is a number, then

$$
T(c f)=x^{2} c f=c x^{2} f=c T(f) .
$$

11. (13 points) In this problem, if M is a matrix, then let $\mathcal{I}(M)$ be the Column space of M. Let A and B be $n \times n$ matrices. For each question: if the answer is yes, then prove the statement; if the answer is no, then give a counter example.
(a) Does $\mathcal{I}(B)$ have to be a subset of $\mathcal{I}(A B)$?

No. Take B to be the identity matrix and A to be the zero matrix.
(b) Does $\mathcal{I}(A B)$ have to be a subset of $\mathcal{I}(B)$?

No. Take $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ We see that $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. The vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in the column space of $A B$ and not in the column space of B.
(c) Suppose B is non-singular. Does $\mathcal{I}(B)$ have to be a subset of $\mathcal{I}(A B)$?

No. Take B to be the identity matrix and A to be the zero matrix.
(d) Suppose B is non-singular. Does $\mathcal{I}(A B)$ have to be a subset of $\mathcal{I}(B)$?

Yes. In this case the column space of B is all of \mathbb{R}^{n}.
(e) Suppose A is non-singular. Does $\mathcal{I}(B)$ have to be a subset of $\mathcal{I}(A B)$?
No. Take $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ We see that $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. The vector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is in the column space of B and not in the column space of $A B$.
(f) Suppose A is non-singular. Does $\mathcal{I}(A B)$ have to be a subset of $\mathcal{I}(B)$?

No. Take $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ We see that $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. The vector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in the column space of $A B$ and not in the column space of B.

