Math 544, Exam 2, Fall 2006

Write your answers as legibly as you can on the blank sheets of paper provided.
Please leave room in the upper left corner for the staple.
Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

The exam is worth a total of 50 points. There are 9 problems. Problem 9 is worth 10 points. Every other problem is worth 5 points.

No Calculators or Cell phones.

I will post the solutions on my website sometime this afternoon.
If I know your e-mail address, I will e-mail your grade to you as soon as I have graded the exam. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

1. Define "null space". Use complete sentences. Include everything that is necessary, but nothing more.

The null space of the matrix A is the set of all vectors v such that $A v=0$.
2. Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{m} are linearly independent if the ONLY numbers c_{1}, \ldots, c_{p}, with $c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3. Define "subspace of \mathbb{R}^{n} ". Use complete sentences. Include everything that is necessary, but nothing more.

The subset V of \mathbb{R}^{n} is a subspace of \mathbb{R}^{n} if $0 \in V ; V$ is closed under addition (that is, if v_{1} and v_{2} are elements of V, then $v_{1}+v_{2}$ is an element of V); and V is closed under scalar multiplication (that is, if v is in V and $c \in \mathbb{R}$, then $c v \in V$.)
4. Let $W=\left\{\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}| | x_{1}\left|=\left|x_{2}\right|\right\}\right.$. Is W a subspace of \mathbb{R}^{2} ? If yes, then give a complete, correct, proof. If no, then give an explicit example that shows that W is not a subspace of of \mathbb{R}^{2}.
NO! The vecotrs $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$ are in V, but the sum $v_{1}+v_{2}=\left[\begin{array}{l}2 \\ 0\end{array}\right]$ is not in V.
5. Let $W=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, \begin{array}{c}x_{1}+2 x_{2}=3 x_{3} \\ 2 x_{1}-3 x_{2}=4 x_{4}\end{array}\right\}$. Is W a subspace of \mathbb{R}^{4} ? If yes, then give a complete, correct, proof. If no, then give an explicit example that shows that W is not a subspace of of \mathbb{R}^{4}.
YES! The set W is the null space of the matrix $\left[\begin{array}{cccc}1 & 2 & -3 & 0 \\ 2 & -3 & 0 & -4\end{array}\right]$. We proved that the null space of every matrix is a vector space.
6. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{5}, with v_{1}, v_{2}, v_{3} linearly independent and $v_{4}=2 v_{1}+3 v_{2}+4 v_{3}$. Do the vectors v_{2}, v_{3}, v_{4} have to be linearly independent? If yes, then give a complete, correct, proof. If no, then give an example.
YES! Suppose

$$
\begin{equation*}
c_{2} v_{2}+c_{3} v_{3}+c_{4} v_{4}=0 \tag{**}
\end{equation*}
$$

It follows that $c_{2} v_{2}+c_{3} v_{3}+c_{4}\left(2 v_{1}+3 v_{2}+4 v_{3}\right)=0 ;$ so,

$$
\begin{equation*}
2 c_{4} v_{1}+\left(c_{2}+3 c_{4}\right) v_{2}+\left(c_{3}+4 c_{4}\right) v_{3}=0 \tag{*}
\end{equation*}
$$

The hypothesis tells us that the vectors v_{1}, v_{2}, v_{3} are linearly independent. It follows that the coefficients of $\left(^{*}\right)$ MUST be zero. In other words, $2 c_{4}=0$, $c_{2}+3 c_{4}=0$, and $c_{3}+4 c_{4}=0$. Thus, c_{4} must be 0 (from the first equation), and c_{2} must be 0 from the second equation, and c_{3} must be 0 from the third equation. We have shown that the ONLY way for $\left(^{(* *)}\right.$ to occur is for $c_{2}=c_{3}=c_{4}=0$. It follows that v_{2}, v_{3}, v_{4} are linearly independent vectors.
7. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{5}, with v_{1}, v_{2}, v_{3} linearly independent and v_{4} equal to a linear combination of v_{1}, v_{2}, and v_{3}. Do the vectors v_{2}, v_{3}, v_{4} have to be linearly independent? If yes, then give a complete, correct, proof. If no, then give an example.

NO! Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \text { and } \quad v_{4}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
0 \\
0
\end{array}\right]
$$

We see that v_{1}, v_{2}, v_{3} are linearly independent (since if $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$, then

$$
\left[\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

and c_{1}, c_{2}, and c_{3} must all be zero); v_{4} is a linear combination of v_{1}, v_{2}, and v_{3} (since $v_{4}=0 v_{1}+0 v_{2}+2 v_{3}$); but v_{2}, v_{3}, v_{4} are linbearly dependent because $2 v_{3}-v_{4}=0$.
8. How many solutions does a system of 4 linear equations in 3 unknowns have? Justify your answer very thoroughly.

A system of 4 linear equations in 3 unknowns might have no solutions (here is an example $x_{1}=1, x_{1}=2, x_{2}=0$, and $x_{3}=0$) or it might have a unique solution (here is an example: $x_{1}=1, x_{1}=1, x_{2}=0$, and $x_{3}=0$) or it might have an infinite number of solitions (here is an example: $x_{1}=1, x_{2}+x_{3}=0, x_{2}+x_{3}=0$, $\left.x_{2}+x_{3}=0\right)$. The hypothesis of this problem did not rule out anything.
9. Let A and B be $n \times n$ matrices. Answer each question. If the answer is yes, then give a complete, correct, proof. If the answer is no, then give an example.
(a) Does the null space of A have to be a subset of the null space of $A B$?

NO! Let $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. We see that $v=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is in the null space of A (since $A v=0$), but v is not in the null space of $A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ (since $A B v \neq 0)$.
(b) Does the null space of B have to be a subset of the null space of $A B$?

YES! Take v from the null space of B. Observe that $A B v=A(B v)={ }^{\dagger} A 0=0$. Thus, v must be in the null space of $A B$. (The equality at ${ }^{\dagger}$ holds because v is in the null space of B.)
(c) Does the null space of $A B$ have to be a subset of the null space of A?

NO! Take A to be the identity matrix and B to be the zero matrix. We see that $A B$ is the zero matrix. Thus, all of \mathbb{R}^{n} is in the null space of $A B$; but only zero is in the null space of A.
(d) Does the null space of $A B$ have to be a subset of the null space of B ?

NO! Take A to be the zero matrix and B to be the identity matrix. We see that $A B$ is the zero matrix. Thus, all of \mathbb{R}^{n} is in the null space of $A B$; but only zero is in the null space of B.

