Math 544, Final Exam, Fall 2005, Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only **one side** of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 16 problems. Problem 1 is worth 10 points. Each of the other problems is worth 6 points. The exam is worth a total of 100 points. SHOW your work. \boxed{CIRCLE} your answer. **CHECK** your answer whenever possible. **No Calculators.**

I WILL GRADE YOUR EXAM ON FRIDAY. Once your exam is graded, I will send your grade to VIP. If the grade isn't on VIP, then I also do not know it. If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website shortly after the exam is finished.

1. Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 2 & 4 & 6 & 2 & 1 & 5 \\ 2 & 4 & 6 & 1 & 2 & 5 \\ 2 & 4 & 6 & 1 & 1 & 4 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix}, \quad \text{and} \quad c = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 3 \end{bmatrix}.$$

- (a) Find the general solution of Ax = b. List three specific solutions, if possible. Check your solutions.
- (b) Find the general solution of Ax = c. List three specific solutions, if possible. Check your solutions.
- (c) Find a basis for the null space of A.
- (d) Find a basis for the column space of A.
- (e) Find a basis for the row space of A.
- (f) Express each column of A in terms of your answer to (d).
- (g) Express each row of A in terms of your answer to (e).

We study the augmented matrix

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 2 & 4 & 6 & 2 & 1 & 5 \\ 2 & 4 & 6 & 1 & 2 & 5 \\ 2 & 4 & 6 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & 2 \\ 2 & 2 \end{bmatrix}.$$

Apply $R_2 \mapsto R_2 - 2R_1$, $R_3 \mapsto R_3 - 2R_1$, and $R_4 \mapsto R_4 - 2R_1$ to obtain

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & -1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Exchange rows 2 and 3 to obtain

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 0 & 0 & 0 & -1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 & -1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

Apply $R_1 \mapsto R_1 + R_2$ and $R_4 \mapsto R_4 - R_2$ to obtain

-1	2	3	0	1	2	1	[1	
0	0	0	-1	0	-1	0	0	
0	0	0	0	-1	-1	0	0	•
0	0	0	0	-1	-1	0	1	

Apply $R_1 \mapsto R_1 + R_3$ and $R_4 \mapsto R_4 - R_3$ to obtain

Γ1	2	3	0	0	1	1	1	
0	0	0	-1	0	-1	0	0	
0	0	0	0	-1	-1	0	0	
$\lfloor 0 \rfloor$	0	0	0	0	0	0	1	

Multiply rows 2 and 3 by -1 to obtain

2	3	0	0	1		1	1	
0	0	1	0	1		0	0	
0	0	0	1	1		0	0	
0	0	0	0	0		0	1	
	$2 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{ccc} 2 & 3 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

The general solution to Ax = b is

Four specific solutions are

$$v_1 = \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1\\1\\0\\0\\0\\0\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -2\\0\\1\\0\\0\\0\\0\\0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 0\\0\\0\\-1\\-1\\-1\\1 \end{bmatrix}.$$

(I obtained v_1 by setting $x_2 = x_3 = x_6 = 0$; v_2 by setting $x_2 = 1, x_3 = x_6 = 0$; v_3 by setting $x_3 = 1, x_2 = x_6 = 0$; and v_4 by setting $x_6 = 1, x_2 = x_3 = 0$.) I check that

$$Av_{1} = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 2 & 4 & 6 & 2 & 1 & 5 \\ 2 & 4 & 6 & 1 & 2 & 5 \\ 2 & 4 & 6 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix} = b; \checkmark$$

$$Av_{2} = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 2 & 4 & 6 & 2 & 1 & 5 \\ 2 & 4 & 6 & 1 & 2 & 5 \\ 2 & 4 & 6 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} = b; \checkmark$$

$$Av_{3} = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 2 & 4 & 6 & 2 & 1 & 5 \\ 2 & 4 & 6 & 1 & 2 & 5 \\ 2 & 4 & 6 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} = b; \checkmark$$

$$Av_{4} = \begin{bmatrix} 1 & 2 & 3 & 1 & 1 & 3 \\ 2 & 4 & 6 & 2 & 1 & 5 \\ 2 & 4 & 6 & 1 & 1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \\ 2 \end{bmatrix} = b; \checkmark$$

(b) The equations Ax = c have NO solution.

(c) The vectors

$w_1 = \begin{bmatrix} - & - & - & - & - & - & - & - & - & -$	$\begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix},$	$w_2 =$	$\begin{bmatrix} -3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$,	$w_3 =$	$\begin{bmatrix} -1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1 \end{bmatrix}$
---	--	---------	---	---	---------	---

are a basis for the null space of A.

(d) The vectors

$$A_{*,1} = \begin{bmatrix} 1\\2\\2\\2 \end{bmatrix}, \quad A_{*,4} = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \quad A_{*,5} = \begin{bmatrix} 1\\1\\2\\1 \end{bmatrix}$$

are a basis for the column space of A.

(e) The vectors

$z_1 = [1]$	2	3	0	0	1]
$z_2 = [0]$	0	0	1	0	1]
$z_3 = [0]$	0	0	0	1	1]

are a basis for the row space of A.

(f)

$$A_{*,2} = 2A_{*,1}, \quad A_{*,3} = 3A_{*,1}, \quad A_{*,6} = A_{*,1} + A_{*,4} + A_{*,5}.$$

(g)

$A_{1,*} = z_1 + z_2 + z_3,$
$A_{2,*} = 2z_1 + 2z_2 + z_3,$
$A_{3,*} = 2z_1 + z_2 + 2z_3,$
$A_{4,*} = 2z_1 + z_2 + z_3.$

2. State any two of the four dimension Theorems.

<u>Theorem 1.</u> If V is a subsapce of \mathbb{R}^n , then every basis for V has the same number of vectors.

<u>Theorem 2.</u> If V is a subsapce of \mathbb{R}^n , then every linearly independent subset in V is part of a basis for V.

<u>Theorem 3.</u> If V is a subsapce of \mathbb{R}^n , then every finite spanning set for V contains a basis for V.

<u>Theorem 4.</u> If A is a matrix, then the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.

3. Define "basis". Use complete sentences. Include everything that is necessary, but nothing more.

A <u>basis</u> for a vector space V is a linearly independent subset of V which spans V.

4. Define "linear transformation". Use complete sentences. Include everything that is necessary, but nothing more.

A function T from the vector space V to the vector space W is a <u>linear transformation</u> if $T(v_1 + v_2) = T(v_1) + T(v_2)$ and $T(cv_1) = cT(v_1)$ for all $v_1, v_2 \in V$ and $c \in \mathbb{R}$.

5. Define "diagonalizable". Use complete sentences. Include everything that is necessary, but nothing more.

The square matrix A is diagonalizable if there exist a diagonal matrix D and an invertible matrix S with $\overline{A = SDS^{-1}}$.

6. Define "nonsingular". Use complete sentences. Include everything that is necessary, but nothing more.

The $n \times n$ matrix A is <u>non-singular</u> if the only vector x in \mathbb{R}^n with Ax = 0 is x = 0.

- 7. Let A be an $n \times n$ matrix. Record eight statements that are equivalent to "the matrix A is invertible".
- 1. There is a matrix B with AB equal to the identity matrix and BA equal to the identity matrix.
- 2. There is a matrix B with AB equal to the identity matrix.
- 3. There is a matrix B with BA equal to the identity matrix.
- 4. The null space of A is $\{0\}$.
- 5. The columns of A are linearly independent.
- 6. The only solution to Ax = 0 is x = 0.
- 7. The columns of A span \mathbb{R}^n .
- 8. The system of equations Ax = b has a solution for all $b \in \mathbb{R}^n$.
- 9. The columns of A are a basis for \mathbb{R}^n .
- 10. The dimension of the null space of A is zero.
- 11. The dimension of the column space of A is n.
- 12. The rank of A is n.
- 13. The rows of A are linearly independent.
- 14. The rows of A span the vector space of all row vectors with n entries.
- 15. The dimension of the row space of A is n.
- 16. Zero is not an eigenvalue of A.
- 8. Recall that \mathcal{P}_3 is the vector space of polynomials of degree less than or equal to three. Let $T: \mathcal{P}_3 \to \mathbb{R}$ be the linear transformation which is given by $T(p(x)) = \int_{-1}^{1} p(x) dx$. Find a basis for the null space of T.

The domain of T has dimension 4, the image of T has dimension 1, so the ranknullity theorem tells us that the null space of T has dimension 3. We complete the problem by exhibiting 3 linearly independent elements of \mathcal{P}_3 which are in the

null space of $T: \left[x, x^3, x^2 - \frac{1}{3} \right].$

9. Let A be a square matrix, v_1 and v_2 be non-zero vectors with $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$, where λ_1 and λ_2 are real numbers with $\lambda_1 \neq \lambda_2$. Prove that $\{v_1, v_2\}$ is a linearly independent set of vectors.

Suppose

(1)
$$c_1v_1 + c_2v_2 = 0.$$

Multiply both sides of (1) by A to get

(2)
$$c_1\lambda_1v_1 + c_2\lambda_2v_2 = 0.$$

Multiply both sides of equation (1) by λ_2 to get

$$c_1\lambda_2v_1 + c_2\lambda_2v_2 = 0.$$

Subtract (2) minus (3) to get

$$c_1(\lambda_1 - \lambda_2)v_1 = 0.$$

The vector v_1 is not zero. If a scalar times v_1 is zero, then the scalar must be zero. Thus, the scalar $c_1(\lambda_1 - \lambda_2) = 0$. But, $(\lambda_1 - \lambda_2)$ is not zero; so, c_1 must be zero. Equation (1) now says that $c_2v_2 = 0$. The vector v_2 is not zero; so, the scalar c_2 must be zero.

10. Find an orthogonal basis for the null space of $A = \begin{bmatrix} 1 & 2 & 3 & 5 \end{bmatrix}$.

One basis for the null space of A is

$$v_1 = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} -3\\0\\1\\0 \end{bmatrix}, v_3 = \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix}.$$

We apply the Gram-Schmidt orthogonalization process to this basis. Let $u_1 =$

$$v_{1} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}. \text{ Let}$$
$$u_{2}' = v_{2} - \frac{u_{1}^{\mathrm{T}}v_{2}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} = \begin{bmatrix} -3\\0\\1\\0 \end{bmatrix} - \frac{6}{5}\begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} = \frac{1}{5}\begin{bmatrix} -3\\-6\\5\\0 \end{bmatrix}.$$

Let

$$u_2 = \begin{bmatrix} -3\\ -6\\ 5\\ 0 \end{bmatrix}.$$

(Notice that $Au_2 = 0$ and $u_1^{\mathrm{T}}u_2 = 0$.) Let

$$u_{3}' = v_{3} - \frac{u_{1}^{\mathrm{T}}v_{3}}{u_{1}^{\mathrm{T}}u_{1}}u_{1} - \frac{u_{2}^{\mathrm{T}}v_{3}}{u_{2}^{\mathrm{T}}u_{2}}u_{2} = \begin{bmatrix} -5\\0\\0\\1 \end{bmatrix} - \frac{10}{5} \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} - \frac{15}{70} \begin{bmatrix} -3\\-6\\5\\0 \end{bmatrix} \\ = \begin{bmatrix} -3\\-6\\5\\0 \end{bmatrix} \\ = \begin{bmatrix} -1\\-2\\0\\1 \end{bmatrix} + \frac{1}{14} \begin{bmatrix} 9\\18\\-15\\0 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -5\\-10\\-15\\14 \end{bmatrix}$$

Let

$$u_3 = \begin{bmatrix} -5\\ -10\\ -15\\ 14 \end{bmatrix}.$$

It is easy to check that

$$u_{1} = \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \quad u_{2} = \begin{bmatrix} -3\\-6\\5\\0 \end{bmatrix}, \quad \text{and} \quad \begin{bmatrix} -5\\-10\\-15\\14 \end{bmatrix}$$

is an orthogonal basis for the null space of A.

11. Let
$$A = \begin{bmatrix} 5 & -2 \\ \frac{28}{3} & -\frac{11}{3} \end{bmatrix}$$
. Find $\lim_{n \to \infty} A^n$.
We see that $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $A \begin{bmatrix} 3 \\ 7 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 3 \\ 7 \end{bmatrix}$. It follows that $AS = SD$ for $S = \begin{bmatrix} 1 & 3 \\ 2 & 7 \end{bmatrix}$ and $D = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{3} \end{bmatrix}$. Thus,
 $\lim_{n \to \infty} A^n = \lim_{n \to \infty} (SDS^{-1})^n = S (\lim_{n \to \infty} D^n) S^{-1} = S \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} S^{-1}$
 $= \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 7 & -3 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 7 & -3 \\ 14 & -6 \end{bmatrix}$.

12. Consider the function $T: \operatorname{Mat}_{2\times 2}(\mathbb{R}) \to \mathbb{R}$ which sends a 2×2 matrix A to the real number $\det(A)$. Is T a linear transformation? Explain.

NO! . Observe that

$$T\left(2\begin{bmatrix}1&0\\0&1\end{bmatrix}\right) = T\left(\begin{bmatrix}2&0\\0&2\end{bmatrix}\right) = 4 \text{ and } 2T\left(\begin{bmatrix}1&0\\0&1\end{bmatrix}\right) = 2;$$

thus, T(cA) is not always equal to cT(A).

13. Express
$$v = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 as a linear combination of $u_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $u_2 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$,
 $u_3 = \begin{bmatrix} -1\\2\\-1 \end{bmatrix}$. (You are welcome to notice that u_1, u_2, u_3 form an

orthogonal set of vectors.) Check your answer.

Suppose $v = c_1u_1 + c_2u_2 + c_3u_3$. Multiply both sides by u_1^{T} to see that $2 = 3c_1$; hence, $c_1 = \frac{2}{3}$, Multiply by u_2^{T} to see that $-1 = 2c_2$; hence $c_2 = \frac{-1}{2}$. Multiply by u_3^{T} to see that $1 = 6c_3$; hence $c_3 = \frac{1}{6}$. We check that

$$\frac{2}{3}u_1 - \frac{1}{2}u_2 + \frac{1}{6}u_3 = \frac{2}{3}\begin{bmatrix}1\\1\\1\end{bmatrix} - \frac{1}{2}\begin{bmatrix}-1\\0\\1\end{bmatrix} + \frac{1}{6}\begin{bmatrix}-1\\2\\-1\end{bmatrix} = \frac{1}{6}\begin{bmatrix}4+3-1\\4+0+2\\4-3-1\end{bmatrix} = \begin{bmatrix}1\\1\\0\end{bmatrix} = v. \checkmark$$

14. **Let**

$$v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}.$$

Let V be a subspace of \mathbb{R}^4 . Suppose that $v_1 \in V$, $v_2 \in V$, $v_3 \notin V$, and $v_4 \notin V$. Do you have enough information to determine the dimension of V? Explain very thoroughly.

<u>NO</u>. The vector space V could have dimension 2. (In this case v_1 and v_2 are a basis for V.) On the other hand, the vector space V could have dimension 3. For example, the vector space V spanned by v_1 , v_2 , and

$$\begin{bmatrix} 0\\1\\0\\0\end{bmatrix}$$

has dimension 3 and does not contain v_3 or v_4 .

15. **Let**

$$v_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 1\\1\\1\\0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \quad v_4 = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$

Let V be a subspace of \mathbb{R}^4 . Suppose that $v_1 \in V$, $v_2 \in V$, $v_3 \in V$, and $v_4 \notin V$. Do you have enough information to determine the dimension of V? Explain very thoroughly.

The vector space V has dimension 3. We have exhibited 3 linearly independent vectors v_1 , v_2 and v_3 in V. So dim $V \ge 3$. On the other hand, V is a subspace of the 4 dimensional vector space \mathbb{R}^4 ; so dim $V \le 4$. Finally, if dim V were equal to 4; then V would have to equal \mathbb{R}^4 . However, V does not equal \mathbb{R}^4 because v_4 is not in V.

16. Let v_1 , v_2 , and v_3 be non-zero vectors in \mathbb{R}^4 . Suppose that $v_i^{\mathrm{T}}v_j = 0$ for all subscripts i and j with $i \neq j$. Prove very thoroughly that v_1 , v_2 , and v_3 are linearly independent.

Suppose c_1 , c_2 , and c_3 are numbers with

$$(*) c_1 v_1 + c_2 v_2 + c_3 v_3 = 0.$$

Multiply by v_1^{T} to get

$$c_1 \cdot v_1^{\mathrm{T}} v_1 + c_2 \cdot v_1^{\mathrm{T}} v_2 + c_3 \cdot v_1^{\mathrm{T}} v_3 = 0.$$

The hypothesis tells us that $v_1^{\mathrm{T}}v_2 = 0$ and $v_1^{\mathrm{T}}v_3 = 0$. So, $c_1 \cdot v_1^{\mathrm{T}}v_1 = 0$. The hypothesis also tells us that v_1 is not zero; from which it follows that $v_1^{\mathrm{T}}v_1 \neq 0$. We conclude that $c_1 = 0$. Multiply (*) by v_2^{T} to see that $c_2 \cdot v_2^{\mathrm{T}}v_2 = 0$; hence, $c_2 = 0$, since the number $v_2^{\mathrm{T}}v_2 \neq 0$. Multiply (*) by v_3^{T} to conclude that $c_3 = 0$. We have shown that each c_i MUST be zero. We conclude that v_1 , v_2 , and v_3 are linearly independent.