Math 544, Final Exam, Fall 2005, Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 16 problems. Problem 1 is worth 10 points. Each of the other problems is worth 6 points. The exam is worth a total of 100 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

I WILL GRADE YOUR EXAM ON FRIDAY. Once your exam is graded, I will send your grade to VIP. If the grade isn't on VIP, then I also do not know it. If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will post the solutions on my website shortly after the exam is finished.

1. Let

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad \text { and } \quad c=\left[\begin{array}{l}
1 \\
2 \\
2 \\
3
\end{array}\right] .
$$

(a) Find the general solution of $A x=b$. List three specific solutions, if possible. Check your solutions.
(b) Find the general solution of $A x=c$. List three specific solutions, if possible. Check your solutions.
(c) Find a basis for the null space of A.
(d) Find a basis for the column space of A.
(e) Find a basis for the row space of A.
(f) Express each column of A in terms of your answer to (d).
(g) Express each row of A in terms of your answer to (e).

We study the augmented matrix

$$
\left[\begin{array}{llllll|ll}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
2 & 4 & 6 & 2 & 1 & 5 & 2 & 2 \\
2 & 4 & 6 & 1 & 2 & 5 & 2 & 2 \\
2 & 4 & 6 & 1 & 1 & 4 & 2 & 3
\end{array}\right]
$$

Apply $R_{2} \mapsto R_{2}-2 R_{1}, R_{3} \mapsto R_{3}-2 R_{1}$, and $R_{4} \mapsto R_{4}-2 R_{1}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right] .
$$

Exchange rows 2 and 3 to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 1 & 1 & 3 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & -1 & -1 & -2 & 0 & 1
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}+R_{2}$ and $R_{4} \mapsto R_{4}-R_{2}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 1
\end{array}\right] .
$$

Apply $R_{1} \mapsto R_{1}+R_{3}$ and $R_{4} \mapsto R_{4}-R_{3}$ to obtain

$$
\left[\begin{array}{cccccc|cc}
1 & 2 & 3 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Multiply rows 2 and 3 by -1 to obtain

$$
\left[\begin{array}{llllll|ll}
1 & 2 & 3 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

The general solution to $A x=b$ is
(a) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{2}\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}-3 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{6}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ -1 \\ -1 \\ 1\end{array}\right]$ for any x_{2}, x_{3}, x_{6} in $\left.\mathbb{R}.\right]$

Four specific solutions are

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right] .
$$

(I obtained v_{1} by setting $x_{2}=x_{3}=x_{6}=0 ; v_{2}$ by setting $x_{2}=1, x_{3}=x_{6}=0$; v_{3} by setting $x_{3}=1, x_{2}=x_{6}=0$; and v_{4} by setting $x_{6}=1, x_{2}=x_{3}=0$.) I check that

$$
\begin{aligned}
& A v_{1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{2}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{3}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
-2 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b ; \checkmark \\
& A v_{4}=\left[\begin{array}{llllll}
1 & 2 & 3 & 1 & 1 & 3 \\
2 & 4 & 6 & 2 & 1 & 5 \\
2 & 4 & 6 & 1 & 2 & 5 \\
2 & 4 & 6 & 1 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right]=b . \checkmark
\end{aligned}
$$

(b) The equations $A x=c$ have NO solution.
(c) The vectors

$$
w_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad w_{3}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

are a basis for the null space of A.
(d) The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
2
\end{array}\right], \quad A_{*, 4}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
1
\end{array}\right], \quad A_{*, 5}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right]
$$

are a basis for the column space of A.
(e) The vectors

$$
\begin{aligned}
& z_{1}=\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 1
\end{array}\right] \\
& z_{2}=\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right] \\
& z_{3}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

are a basis for the row space of A.
(f)

$$
A_{*, 2}=2 A_{*, 1}, \quad A_{*, 3}=3 A_{*, 1}, \quad A_{*, 6}=A_{*, 1}+A_{*, 4}+A_{*, 5}
$$

(g)

$$
\begin{array}{|l|}
\hline A_{1, *}=z_{1}+z_{2}+z_{3}, \\
A_{2, *}=2 z_{1}+2 z_{2}+z_{3}, \\
A_{3, *}=2 z_{1}+z_{2}+2 z_{3}, \\
A_{4, *}=2 z_{1}+z_{2}+z_{3} . \\
\hline
\end{array}
$$

2. State any two of the four dimension Theorems.

Theorem 1. If V is a subsapce of \mathbb{R}^{n}, then every basis for V has the same number of vectors.

Theorem 2. If V is a subsapce of \mathbb{R}^{n}, then every linearly independent subset in V is part of a basis for V.

Theorem 3. If V is a subsapce of \mathbb{R}^{n}, then every finite spanning set for V contains a basis for V.

Theorem 4. If A is a matrix, then the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.
3. Define "basis". Use complete sentences. Include everything that is necessary, but nothing more.

A basis for a vector space V is a linearly independent subset of V which spans V.
4. Define "linear transformation". Use complete sentences. Include everything that is necessary, but nothing more.

A function T from the vector space V to the vector space W is a $\underline{\text { linear transformation }}$ if $T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)$ and $T\left(c v_{1}\right)=c T\left(v_{1}\right)$ for all $v_{1}, v_{2} \in V$ and $c \in \mathbb{R}$.
5. Define "diagonalizable". Use complete sentences. Include everything that is necessary, but nothing more.

The square matrix A is diagonalizable if there exist a diagonal matrix D and an invertible matrix S with $A=S D S^{-1}$.
6. Define "nonsingular". Use complete sentences. Include everything that is necessary, but nothing more.

The $n \times n$ matrix A is non-singular if the only vector x in \mathbb{R}^{n} with $A x=0$ is $x=0$.
7. Let A be an $n \times n$ matrix. Record eight statements that are equivalent to "the matrix A is invertible".

1. There is a matrix B with $A B$ equal to the identity matrix and $B A$ equal to the identity matrix.
2. There is a matrix B with $A B$ equal to the identity matrix.
3. There is a matrix B with $B A$ equal to the identity matrix.
4. The null space of A is $\{0\}$.
5. The columns of A are linearly independent.
6. The only solution to $A x=0$ is $x=0$.
7. The columns of A span \mathbb{R}^{n}.
8. The system of equations $A x=b$ has a solution for all $b \in \mathbb{R}^{n}$.
9. The columns of A are a basis for \mathbb{R}^{n}.
10. The dimension of the null space of A is zero.
11. The dimension of the column space of A is n.
12. The rank of A is n.
13. The rows of A are linearly independent.
14. The rows of A span the vector space of all row vectors with n entries.

15 . The dimension of the row space of A is n.
16. Zero is not an eigenvalue of A.
8. Recall that \mathcal{P}_{3} is the vector space of polynomials of degree less than or equal to three. Let $T: \mathcal{P}_{3} \rightarrow \mathbb{R}$ be the linear transformation which is given by $T(p(x))=\int_{-1}^{1} p(x) d x$. Find a basis for the null space of T.

The domain of T has dimension 4 , the image of T has dimension 1 , so the ranknullity theorem tells us that the null space of T has dimension 3 . We complete the problem by exhibiting 3 linearly independent elements of \mathcal{P}_{3} which are in the null space of $T: \quad x, x^{3}, x^{2}-\frac{1}{3}$.
9. Let A be a square matrix, v_{1} and v_{2} be non-zero vectors with $A v_{1}=\lambda_{1} v_{1}$ and $A v_{2}=\lambda_{2} v_{2}$, where λ_{1} and λ_{2} are real numbers with $\lambda_{1} \neq \lambda_{2}$. Prove that $\left\{v_{1}, v_{2}\right\}$ is a linearly independent set of vectors.
Suppose

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}=0 \tag{1}
\end{equation*}
$$

Multiply both sides of (1) by A to get

$$
\begin{equation*}
c_{1} \lambda_{1} v_{1}+c_{2} \lambda_{2} v_{2}=0 \tag{2}
\end{equation*}
$$

Multiply both sides of equation (1) by λ_{2} to get

$$
\begin{equation*}
c_{1} \lambda_{2} v_{1}+c_{2} \lambda_{2} v_{2}=0 \tag{3}
\end{equation*}
$$

Subtract (2) minus (3) to get

$$
c_{1}\left(\lambda_{1}-\lambda_{2}\right) v_{1}=0
$$

The vector v_{1} is not zero. If a scalar times v_{1} is zero, then the scalar must be zero. Thus, the scalar $c_{1}\left(\lambda_{1}-\lambda_{2}\right)=0$. But, $\left(\lambda_{1}-\lambda_{2}\right)$ is not zero; so, c_{1} must be zero. Equation (1) now says that $c_{2} v_{2}=0$. The vector v_{2} is not zero; so, the scalar c_{2} must be zero.
10. Find an orthogonal basis for the null space of $A=\left[\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right]$.

One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]
$$

We apply the Gram-Schmidt orthogonalization process to this basis. Let $u_{1}=$ $v_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]$. Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0
\end{array}\right]-\frac{6}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right] .
$$

Let

$$
u_{2}=\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right]
$$

(Notice that $A u_{2}=0$ and $u_{1}^{\mathrm{T}} u_{2}=0$.) Let

$$
\begin{gathered}
u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
1
\end{array}\right]-\frac{10}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]-\underbrace{\frac{15}{70}}_{\frac{3}{14}}\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right] \\
=\left[\begin{array}{c}
-1 \\
-2 \\
0 \\
1
\end{array}\right]+\frac{1}{14}\left[\begin{array}{c}
9 \\
18 \\
-15 \\
0
\end{array}\right]=\frac{1}{14}\left[\begin{array}{c}
-5 \\
-10 \\
-15 \\
14
\end{array}\right]
\end{gathered}
$$

Let

$$
u_{3}=\left[\begin{array}{c}
-5 \\
-10 \\
-15 \\
14
\end{array}\right]
$$

It is easy to check that

$$
u_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-3 \\
-6 \\
5 \\
0
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{c}
-5 \\
-10 \\
-15 \\
14
\end{array}\right]
$$

is an orthogonal basis for the null space of A.
11. Let $A=\left[\begin{array}{cc}5 & -2 \\ \frac{28}{3} & -\frac{11}{3}\end{array}\right]$. Find $\lim _{n \rightarrow \infty} A^{n}$.

We see that $A\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $A\left[\begin{array}{l}3 \\ 7\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}3 \\ 7\end{array}\right]$. It follows that $A S=S D$ for $S=\left[\begin{array}{ll}1 & 3 \\ 2 & 7\end{array}\right]$ and $D=\left[\begin{array}{cc}1 & 0 \\ 0 & \frac{1}{3}\end{array}\right]$. Thus,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} A^{n}=\lim _{n \rightarrow \infty}\left(S D S^{-1}\right)^{n}=S\left(\lim _{n \rightarrow \infty} D^{n}\right) S^{-1}=S\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] S^{-1} \\
=\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
7 & -3 \\
-2 & 1
\end{array}\right]=\left[\begin{array}{cc}
7 & -3 \\
14 & -6
\end{array}\right]
\end{gathered}
$$

12. Consider the function $T: \operatorname{Mat}_{2 \times 2}(\mathbb{R}) \rightarrow \mathbb{R}$ which sends a 2×2 matrix A to the real number $\operatorname{det}(A)$. Is T a linear transfromation? Explain.

NO!. Observe that

$$
T\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=T\left(\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\right)=4 \quad \text { and } \quad 2 T\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=2
$$

thus, $T(c A)$ is not always equal to $c T(A)$.
13. Express $v=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ as a linear combination of $u_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$, $u_{3}=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]$. (You are welcome to notice that u_{1}, u_{2}, u_{3} form an orthogonal set of vectors.) Check your answer.
Suppose $v=c_{1} u_{1}+c_{2} u_{2}+c_{3} u_{3}$. Multiply both sides by u_{1}^{T} to see that $2=3 c_{1}$; hence, $c_{1}=\frac{2}{3}$, Multiply by u_{2}^{T} to see that $-1=2 c_{2}$; hence $c_{2}=\frac{-1}{2}$. Multiply by u_{3}^{T} to see that $1=6 c_{3}$; hence $c_{3}=\frac{1}{6}$. We check that

$$
\frac{2}{3} u_{1}-\frac{1}{2} u_{2}+\frac{1}{6} u_{3}=\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]+\frac{1}{6}\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right]=\frac{1}{6}\left[\begin{array}{l}
4+3-1 \\
4+0+2 \\
4-3-1
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=v . \checkmark
$$

14. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Let V be a subspace of \mathbb{R}^{4}. Suppose that $v_{1} \in V, v_{2} \in V, v_{3} \notin V$, and $v_{4} \notin V$. Do you have enough information to determine the dimension of V ? Explain very thoroughly.

NO. The vector space V could have dimension 2. (In this case v_{1} and v_{2} are a basis for V.) On the other hand, the vector space V could have dimension 3 . For example, the vector space V spanned by v_{1}, v_{2}, and

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

has dimension 3 and does not contain v_{3} or v_{4}.
15. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

Let V be a subspace of \mathbb{R}^{4}. Suppose that $v_{1} \in V, v_{2} \in V, v_{3} \in V$, and $v_{4} \notin V$. Do you have enough information to determine the dimension of V ? Explain very thoroughly.

The vector space V has dimension 3 . We have exhibited 3 linearly independent vectors v_{1}, v_{2} and v_{3} in V. So $\operatorname{dim} V \geq 3$. On the other hand, V is a subspace of the 4 dimensional vector space \mathbb{R}^{4}; so $\operatorname{dim} V \leq 4$. Finally, if $\operatorname{dim} V$ were equal to 4 ; then V would have to equal \mathbb{R}^{4}. However, V does not equal \mathbb{R}^{4} because v_{4} is not in V.
16. Let v_{1}, v_{2}, and v_{3} be non-zero vectors in \mathbb{R}^{4}. Suppose that $v_{i}^{T} v_{j}=0$ for all subscripts i and j with $i \neq j$. Prove very thoroughly that v_{1}, v_{2}, and v_{3} are linearly independent.

Suppose c_{1}, c_{2}, and c_{3} are numbers with

$$
\begin{equation*}
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0 \tag{*}
\end{equation*}
$$

Multiply by v_{1}^{T} to get

$$
c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}+c_{2} \cdot v_{1}^{\mathrm{T}} v_{2}+c_{3} \cdot v_{1}^{\mathrm{T}} v_{3}=0 .
$$

The hypothesis tells us that $v_{1}^{\mathrm{T}} v_{2}=0$ and $v_{1}^{\mathrm{T}} v_{3}=0$. So, $c_{1} \cdot v_{1}^{\mathrm{T}} v_{1}=0$. The hypothesis also tells us that v_{1} is not zero; from which it follows that $v_{1}^{\mathrm{T}} v_{1} \neq 0$. We conclude that $c_{1}=0$. Multiply $\left(^{*}\right)$ by v_{2}^{T} to see that $c_{2} \cdot v_{2}^{\mathrm{T}} v_{2}=0$; hence, $c_{2}=0$, since the number $v_{2}^{\mathrm{T}} v_{2} \neq 0$. Multiply $\left(^{*}\right)$ by v_{3}^{T} to conclude that $c_{3}=0$. We have shown that each c_{i} MUST be zero. We conclude that v_{1}, v_{2}, and v_{3} are linearly independent.

