
Math 544, Final Exam, Fall 2005, Solutions
Write your answers as legibly as you can on the blank sheets of paper provided.
Use only one side of each sheet. Be sure to number your pages. Put your solution
to problem 1 first, and then your solution to number 2, etc.; although, by using
enough paper, you can do the problems in any order that suits you.

There are 16 problems. Problem 1 is worth 10 points. Each of the other problems
is worth 6 points. The exam is worth a total of 100 points. SHOW your

work. CIRCLE your answer. CHECK your answer whenever possible. No
Calculators.

I WILL GRADE YOUR EXAM ON FRIDAY. Once your exam is graded, I
will send your grade to VIP. If the grade isn’t on VIP, then I also do not know it.
If I know your e-mail address, I will e-mail your grade to you. If I don’t already
know your e-mail address and you want me to know it, then send me an e-mail.

I will post the solutions on my website shortly after the exam is finished.

1. Let

A =






1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4




 , b =






1
2
2
2




 , and c =






1
2
2
3




 .

(a) Find the general solution of Ax = b . List three specific solutions,
if possible. Check your solutions.

(b) Find the general solution of Ax = c . List three specific solutions,
if possible. Check your solutions.

(c) Find a basis for the null space of A .
(d) Find a basis for the column space of A .
(e) Find a basis for the row space of A .
(f) Express each column of A in terms of your answer to (d).
(g) Express each row of A in terms of your answer to (e).

We study the augmented matrix





1 2 3 1 1 3 1 1
2 4 6 2 1 5 2 2
2 4 6 1 2 5 2 2
2 4 6 1 1 4 2 3




 .

Apply R2 7→ R2 − 2R1 , R3 7→ R3 − 2R1 , and R4 7→ R4 − 2R1 to obtain





1 2 3 1 1 3 1 1
0 0 0 0 −1 −1 0 0
0 0 0 −1 0 −1 0 0
0 0 0 −1 −1 −2 0 1




 .
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Exchange rows 2 and 3 to obtain






1 2 3 1 1 3 1 1
0 0 0 −1 0 −1 0 0
0 0 0 0 −1 −1 0 0
0 0 0 −1 −1 −2 0 1




 .

Apply R1 7→ R1 + R2 and R4 7→ R4 − R2 to obtain






1 2 3 0 1 2 1 1
0 0 0 −1 0 −1 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 −1 −1 0 1




 .

Apply R1 7→ R1 + R3 and R4 7→ R4 − R3 to obtain






1 2 3 0 0 1 1 1
0 0 0 −1 0 −1 0 0
0 0 0 0 −1 −1 0 0
0 0 0 0 0 0 0 1




 .

Multiply rows 2 and 3 by −1 to obtain






1 2 3 0 0 1 1 1
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1




 .

The general solution to Ax = b is

(a)










x1

x2

x3

x4

x5

x6










=










1
0
0
0
0
0










+ x2










−2
1
0
0
0
0










+ x3










−3
0
1
0
0
0










+ x6










−1
0
0
−1
−1
1










for any x2, x3, x6 in R.

Four specific solutions are

v1 =










1
0
0
0
0
0










, v2 =










−1
1
0
0
0
0










, v3 =










−2
0
1
0
0
0










, v4 =










0
0
0
−1
−1
1










.
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(I obtained v1 by setting x2 = x3 = x6 = 0 ; v2 by setting x2 = 1, x3 = x6 = 0 ;
v3 by setting x3 = 1, x2 = x6 = 0 ; and v4 by setting x6 = 1, x2 = x3 = 0 .) I
check that

Av1 =






1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4















1
0
0
0
0
0










=






1
2
2
2




 = b; X

Av2 =






1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4















−1
1
0
0
0
0










=






1
2
2
2




 = b; X

Av3 =






1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4















−2
0
1
0
0
0










=






1
2
2
2




 = b; X

Av4 =






1 2 3 1 1 3
2 4 6 2 1 5
2 4 6 1 2 5
2 4 6 1 1 4















0
0
0
−1
−1
1










=






1
2
2
2




 = b.X

(b) The equations Ax = c have NO solution.

(c) The vectors

w1 =










−2
1
0
0
0
0










, w2 =










−3
0
1
0
0
0










, w3 =










−1
0
0
−1
−1
1










are a basis for the null space of A .
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(d) The vectors

A∗,1 =






1
2
2
2




 , A∗,4 =






1
2
1
1




 , A∗,5 =






1
1
2
1






are a basis for the column space of A .

(e) The vectors

z1 = [ 1 2 3 0 0 1 ]
z2 = [ 0 0 0 1 0 1 ]
z3 = [ 0 0 0 0 1 1 ]

are a basis for the row space of A .

(f)

A∗,2 = 2A∗,1, A∗,3 = 3A∗,1, A∗,6 = A∗,1 + A∗,4 + A∗,5.

(g)

A1,∗ = z1 + z2 + z3,
A2,∗ = 2z1 + 2z2 + z3,
A3,∗ = 2z1 + z2 + 2z3,
A4,∗ = 2z1 + z2 + z3.

2. State any two of the four dimension Theorems.

Theorem 1. If V is a subsapce of R
n , then every basis for V has the same

number of vectors.

Theorem 2. If V is a subsapce of R
n , then every linearly independent subset in

V is part of a basis for V .

Theorem 3. If V is a subsapce of R
n , then every finite spanning set for V

contains a basis for V .

Theorem 4. If A is a matrix, then the dimension of the column space of A plus
the dimension of the null space of A is equal to the number of columns of A .

3. Define “basis”. Use complete sentences. Include everything that is
necessary, but nothing more.

A basis for a vector space V is a linearly independent subset of V which spans
V .
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4. Define “linear transformation”. Use complete sentences. Include
everything that is necessary, but nothing more.

A function T from the vector space V to the vector space W is a
linear transformation if T (v1 + v2) = T (v1) + T (v2) and T (cv1) = cT (v1) for
all v1, v2 ∈ V and c ∈ R .

5. Define “diagonalizable”. Use complete sentences. Include everything
that is necessary, but nothing more.

The square matrix A is diagonalizable if there exist a diagonal matrix D and an

invertible matrix S with A = SDS−1 .

6. Define “nonsingular”. Use complete sentences. Include everything
that is necessary, but nothing more.

The n× n matrix A is non-singular if the only vector x in R
n with Ax = 0 is

x = 0 .

7. Let A be an n×n matrix. Record eight statements that are equivalent
to “the matrix A is invertible”.

1. There is a matrix B with AB equal to the identity matrix and BA equal to
the identity matrix.

2. There is a matrix B with AB equal to the identity matrix.
3. There is a matrix B with BA equal to the identity matrix.
4. The null space of A is {0} .
5. The columns of A are linearly independent.
6. The only solution to Ax = 0 is x = 0 .
7. The columns of A span R

n .
8. The system of equations Ax = b has a solution for all b ∈ R

n .
9. The columns of A are a basis for R

n .
10. The dimension of the null space of A is zero.
11. The dimension of the column space of A is n .
12. The rank of A is n .
13. The rows of A are linearly independent.
14. The rows of A span the vector space of all row vectors with n entries.
15. The dimension of the row space of A is n .
16. Zero is not an eigenvalue of A .

8. Recall that P3 is the vector space of polynomials of degree less than
or equal to three. Let T : P3 → R be the linear transformation which

is given by T (p(x)) =
∫ 1

−1
p(x)dx . Find a basis for the null space of T .
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The domain of T has dimension 4 , the image of T has dimension 1 , so the rank-
nullity theorem tells us that the null space of T has dimension 3 . We complete
the problem by exhibiting 3 linearly independent elements of P3 which are in the

null space of T : x, x3, x2 −
1

3
.

9. Let A be a square matrix, v1 and v2 be non-zero vectors with
Av1 = λ1v1 and Av2 = λ2v2 , where λ1 and λ2 are real numbers with
λ1 6= λ2 . Prove that {v1, v2} is a linearly independent set of vectors.

Suppose

(1) c1v1 + c2v2 = 0.

Multiply both sides of (1) by A to get

(2) c1λ1v1 + c2λ2v2 = 0.

Multiply both sides of equation (1) by λ2 to get

(3) c1λ2v1 + c2λ2v2 = 0.

Subtract (2) minus (3) to get

c1(λ1 − λ2)v1 = 0.

The vector v1 is not zero. If a scalar times v1 is zero, then the scalar must be
zero. Thus, the scalar c1(λ1 − λ2) = 0 . But, (λ1 − λ2) is not zero; so, c1 must
be zero. Equation (1) now says that c2v2 = 0 . The vector v2 is not zero; so, the
scalar c2 must be zero.

10. Find an orthogonal basis for the null space of A = [ 1 2 3 5 ] .

One basis for the null space of A is

v1 =






−2
1
0
0




 , v2 =






−3
0
1
0




 , v3 =






−5
0
0
1




 .

We apply the Gram-Schmidt orthogonalization process to this basis. Let u1 =

v1 =






−2
1
0
0




 . Let

u′

2 = v2 −
uT

1
v2

uT

1
u1

u1 =






−3
0
1
0




 −

6

5






−2
1
0
0




 =

1

5






−3
−6
5
0




 .
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Let

u2 =






−3
−6
5
0




 .

(Notice that Au2 = 0 and uT

1
u2 = 0 .) Let

u′

3
= v3 −

uT

1 v3

uT

1
u1

u1 −
uT

2 v3

uT

2
u2

u2 =






−5
0
0
1




 −

10

5






−2
1
0
0




 −

15

70
︸︷︷︸

3

14






−3
−6
5
0






=






−1
−2
0
1




 +

1

14






9
18
−15
0




 =

1

14






−5
−10
−15
14






Let

u3 =






−5
−10
−15
14




 .

It is easy to check that

u1 =






−2
1
0
0




 , u2 =






−3
−6
5
0




 , and






−5
−10
−15
14






is an orthogonal basis for the null space of A .

11. Let A =

[
5 −2
28

3
− 11

3

]

. Find lim
n→∞

An .

We see that A

[
1
2

]

=

[
1
2

]

and A

[
3
7

]

= 1

3

[
3
7

]

. It follows that AS = SD for

S =

[
1 3
2 7

]

and D =

[
1 0
0 1

3

]

. Thus,

lim
n→∞

An = lim
n→∞

(SDS−1)n = S
(

lim
n→∞

Dn
)

S−1 = S

[
1 0
0 0

]

S−1

=

[
1 0
2 0

] [
7 −3
−2 1

]

=

[
7 −3
14 −6

]

.
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12. Consider the function T : Mat2×2(R) → R which sends a 2 × 2 matrix
A to the real number det(A) . Is T a linear transfromation? Explain.

NO! . Observe that

T

(

2

[
1 0
0 1

])

= T

([
2 0
0 2

])

= 4 and 2T

([
1 0
0 1

])

= 2;

thus, T (cA) is not always equal to cT (A) .

13. Express v =





1
1
0



 as a linear combination of u1 =





1
1
1



 , u2 =





−1
0
1



 ,

u3 =





−1
2
−1



 . (You are welcome to notice that u1, u2, u3 form an

orthogonal set of vectors.) Check your answer.

Suppose v = c1u1 + c2u2 + c3u3 . Multiply both sides by uT

1
to see that 2 = 3c1 ;

hence, c1 = 2

3
, Multiply by uT

2
to see that −1 = 2c2 ; hence c2 = −1

2
. Multiply

by uT

3
to see that 1 = 6c3 ; hence c3 = 1

6
. We check that

2

3
u1−

1

2
u2 +

1

6
u3 =

2

3





1
1
1



−
1

2





−1
0
1



+
1

6





−1
2
−1



 =
1

6





4 + 3 − 1
4 + 0 + 2
4 − 3 − 1



 =





1
1
0



 = v. X

14. Let

v1 =






1
1
1
1




 , v2 =






1
1
1
0




 , v3 =






1
1
0
0




 , v4 =






1
0
0
0




 .

Let V be a subspace of R
4 . Suppose that v1 ∈ V , v2 ∈ V , v3 /∈ V , and

v4 /∈ V . Do you have enough information to determine the dimension
of V ? Explain very thoroughly.

NO . The vector space V could have dimension 2 . (In this case v1 and v2 are
a basis for V .) On the other hand, the vector space V could have dimension 3 .
For example, the vector space V spanned by v1 , v2 , and






0
1
0
0






has dimension 3 and does not contain v3 or v4 .
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15. Let

v1 =






1
1
1
1




 , v2 =






1
1
1
0




 , v3 =






1
1
0
0




 , v4 =






1
0
0
0




 .

Let V be a subspace of R
4 . Suppose that v1 ∈ V , v2 ∈ V , v3 ∈ V , and

v4 /∈ V . Do you have enough information to determine the dimension
of V ? Explain very thoroughly.

The vector space V has dimension 3 . We have exhibited 3 linearly independent
vectors v1 , v2 and v3 in V . So dimV ≥ 3 . On the other hand, V is a subspace
of the 4 dimensional vector space R

4 ; so dimV ≤ 4 . Finally, if dim V were
equal to 4 ; then V would have to equal R

4 . However, V does not equal R
4

because v4 is not in V .

16. Let v1 , v2 , and v3 be non-zero vectors in R
4 . Suppose that vT

i vj = 0
for all subscripts i and j with i 6= j . Prove very thoroughly that v1 ,
v2 , and v3 are linearly independent.

Suppose c1 , c2 , and c3 are numbers with

(*) c1v1 + c2v2 + c3v3 = 0.

Multiply by vT

1
to get

c1 · v
T

1
v1 + c2 · v

T

1
v2 + c3 · v

T

1
v3 = 0.

The hypothesis tells us that vT

1
v2 = 0 and vT

1
v3 = 0 . So, c1 · vT

1
v1 = 0 . The

hypothesis also tells us that v1 is not zero; from which it follows that vT

1 v1 6= 0 .
We conclude that c1 = 0 . Multiply (*) by vT

2
to see that c2 · vT

2
v2 = 0 ; hence,

c2 = 0 , since the number vT
2 v2 6= 0 . Multiply (*) by vT

3 to conclude that c3 = 0 .
We have shown that each ci MUST be zero. We conclude that v1 , v2 , and v3

are linearly independent.


