Math 544, Exam 3, Fall 2005 Solutions

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you. There are 10 problems. The exam worth 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will post the solutions on my website shortly after the exam is finished.

1. (8 points) Let

$$
A=\left[\begin{array}{ccccc}
2 & 6 & 2 & 8 & 2 \\
2 & 6 & 3 & 11 & 2 \\
4 & 12 & 5 & 19 & 5 \\
2 & 6 & 2 & 8 & 2
\end{array}\right]
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.
(d) Write each column of A as a linear combination of your answer to (b).
(e) Write each row of A as a linear combination of your answer to (c). Replace $R 1$ by $\frac{1}{2} R 1$ to get

$$
\left[\begin{array}{ccccc}
1 & 3 & 1 & 4 & 1 \\
2 & 6 & 3 & 11 & 2 \\
4 & 12 & 5 & 19 & 5 \\
2 & 6 & 2 & 8 & 2
\end{array}\right]
$$

Apply $R 2 \mapsto R 2-2 R 1, R 3 \mapsto R 3-4 R 1$ and $R 4 \mapsto R 4-2 R 1$ to get

$$
\left[\begin{array}{lllll}
1 & 3 & 1 & 4 & 1 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Apply $R 1 \mapsto R 1-R 2$ and $R 3 \mapsto R 3-R 2$ to get

$$
\left[\begin{array}{lllll}
1 & 3 & 0 & 1 & 1 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Apply $R 1 \mapsto R 1-R 3$ to get

$$
\left[\begin{array}{lllll}
1 & 3 & 0 & 1 & 0 \\
0 & 0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The vectors in the null space of A have the form

$$
\begin{array}{lr}
x_{1}=-3 x_{2} & -x_{4} \\
x_{2}= & x_{2} \\
x_{3}= & -3 x_{4} \\
x_{4}= & x_{4} \\
x_{5}= & 0
\end{array}
$$

So the vectors

$$
v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \text { and } \quad v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
-3 \\
1 \\
0
\end{array}\right] \quad(a)
$$

are a basis for the null space of A. (Do check that $A v_{1}=0$ and $A v_{2}=0$.) Columns 1,3 , and 5 in the reduced matrix have leading ones. So columns 1, 3, and 5 from the original matrix form a basis for the column space of the original matrix. In other words,

$$
A_{*, 1}=\left[\begin{array}{l}
2 \\
2 \\
4 \\
2
\end{array}\right], \quad A_{*, 3}=\left[\begin{array}{l}
2 \\
3 \\
5 \\
2
\end{array}\right], \quad \text { and } \quad A_{*, 5}=\left[\begin{array}{l}
2 \\
2 \\
5 \\
2
\end{array}\right] \quad(b)
$$

form a basis for the column space of A. The fact that v_{1} is in the null space of A tells me that $A_{*, 2}=3 A_{*, 1}$ and the fact that v_{2} is in the null space of A tells me that $A_{*, 4}=A_{*, 1}+3 A_{*, 3}$. Thus,

$$
\begin{aligned}
& A_{*, 1}=A_{*, 1} \\
& A_{*, 2}=3 A_{*, 1} \\
& A_{*, 3}=A_{*, 3} \\
& A_{*, 4}=A_{*, 1}+3 A_{*, 3} \\
& A_{*, 5}=A_{*, 5}
\end{aligned}
$$

The non-zero rows of the reduced matrix are a basis for the row space of the original matrix; that is

$$
\begin{align*}
w_{1} & =\left[\begin{array}{lllll}
1 & 3 & 0 & 1 & 0
\end{array}\right], \\
w_{2} & =\left[\begin{array}{lllll}
0 & 0 & 1 & 3 & 0
\end{array}\right], \tag{c}\\
w_{3} & =\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{align*}
$$

is a basis for the row space of A. It is clear that

$$
\begin{array}{|l|}
\hline A_{1, *}=2 w_{1}+2 w_{2}+2 w_{3} \\
A_{2, *}=2 w_{1}+3 w_{2}+2 w_{3} \\
A_{3, *}=4 w_{1}+5 w_{2}+5 w_{3} \\
A_{4, *}=2 w_{1}+2 w_{2}+2 w_{3} \\
\hline
\end{array}
$$

2. (6 points) Find an orthogonal basis for the vector space spanned by

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

Let $u_{1}=v_{1}$. Let

$$
u_{2}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]-\frac{5}{5}\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
3 \\
4
\end{array}\right] .
$$

Let

$$
u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{3}{5}\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right]-\frac{7}{25}\left[\begin{array}{l}
0 \\
0 \\
3 \\
4
\end{array}\right]=\frac{1}{25}\left[\begin{array}{c}
10 \\
-5 \\
4 \\
-3
\end{array}\right] .
$$

Let $u_{3}=25 u_{3}^{\prime}$. So, our answer is:

$$
u_{1}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
0 \\
0 \\
3 \\
4
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
10 \\
-5 \\
4 \\
-3
\end{array}\right]
$$

We check that u_{1}, u_{2}, and u_{3} form an orthogonal set, and that u_{1}, u_{2}, u_{3} span the same vector space as v_{1}, v_{2}, v_{3}. Indeed, we notice that $v_{1}=u_{1}, v_{2}=u_{1}+u_{2}$, and $v_{3}=\frac{3}{5} u_{1}+\frac{7}{25} u_{2}+\frac{1}{25} u_{3}$.
3. (4 points) Express $v=\left[\begin{array}{c}3 \\ 2 \\ 0 \\ -1\end{array}\right]$ as a linear combination of

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right], \quad \text { and } v_{3}=\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]
$$

You are encouraged to notice that v_{1}, v_{2}, v_{3} is an orthogonal set.
Suppose $v=c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}$. Multiply by v_{i}^{T} to see that $4=4 c_{1},-2=4 c_{2}$, and $6=4 c_{3}$. So $c_{1}=1, c_{2}=-\frac{1}{2}, c_{3}=\frac{3}{2}$. We check

$$
v_{1}-\frac{1}{2} v_{2}+\frac{3}{2} v_{3}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]+\frac{3}{2}\left[\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
3 \\
2 \\
0 \\
-1
\end{array}\right]=v . \checkmark
$$

4. (8 points) Let A be a non-singular $n \times n$ matrix and B be an $n \times n$ matrix? Answer each question. If the answer is "yes", prove the statement. If the answer is "no", give an example.
(a) Does the column space of $A B$ have to equal the column space of B ?
(b) Does the null space of $A B$ have to equal the null space of B ?
(a) Does the rank space of $A B$ have to equal the rank space of B ?
(a) no If $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. We see that $A B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$; and therefore B and $A B$ have different column spaces. (The column space of B is the " x-axis". The column space of $A B$ is the " y-axis".)
(b) yes If v is in the null space of B, then $B v=0$; so $A B v=0$ and v is in the null space of $A B$. If v is in the null space of $A B$, then $A B v=0$; however A is non-singular, so $B v$ also has to be zero; hence, v is in the null space of B.
(c) yes Part (b) proves that B and $A B$ have the same nullity. These matrices also have the same number of columns. The rank-nullity Theorem (see theorem 4 of number 6) now guarantees that B and $A B$ have the same rank.
5. (4 points) Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] .
$$

Let V be a subspace of \mathbb{R}^{4}. Suppose that $v_{1} \in V, v_{2} \in V, v_{3} \notin V$, and $v_{4} \notin V$. Do you have enough information to determine the dimension of V ? Explain very thoroughly.

NO . The vector space V could have dimension 2 . (In this case v_{1} and v_{2} are a basis for V.) On the other hand, the vector space V could have dimension 3 . For example, the vector space V spanned by v_{1}, v_{2}, and

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

has dimension 3 and does not contain v_{3} or v_{4}.

6. (4 points) State any one of the four dimension Theorems.

Theorem 1. If V is a subsapce of \mathbb{R}^{n}, then every basis for V has the same number of vectors.

Theorem 2. If V is a subsapce of \mathbb{R}^{n}, then every linearly independent subset in V is part of a basis for V.

Theorem 3. If V is a subsapce of \mathbb{R}^{n}, then every finite spanning set for V contains a basis for V.

Theorem 4. If A is a matrix, then the dimension of the column space of A plus the dimension of the null space of A is equal to the number of columns of A.
7. (4 points) Define "basis". Use complete sentences. Include everything that is necessary, but nothing more.

A basis for a vector space V is a linearly independent subset of V which spans V.
8. (4 points) Define "dimension". Use complete sentences. Include everything that is necessary, but nothing more.

The dimension of a vector space V is the number of vectors in a basis for V.
9. (4 points)Let $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3} \left\lvert\, \begin{array}{l}x_{1}+3 x_{2}+4 x_{3}=1 \\ 2 x_{1}+9 x_{2}+5 x_{3}=0 \\ 5 x_{1}+14 x_{2}+41 x_{3}=0 \\ -x_{1}+32 x_{2}+12 x_{3}=0\end{array}\right.\right\}$. Is V a vector space? Explain thoroughly.

NO. The zero vector is not in V.
10. (4 points)Let $V=\left\{\left.\left[\begin{array}{c}x_{1}+3 x_{2}+4 x_{3} \\ 2 x_{1}+9 x_{2}+5 x_{3} \\ 5 x_{1}+14 x_{2}+41 x_{3} \\ -x_{1}+32 x_{2}+12 x_{3}\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}$. Is V a vector space? Explain thoroughly.

YES. The set V is the column space of the matrix

$$
\left[\begin{array}{ccc}
1 & 3 & 4 \\
2 & 9 & 5 \\
5 & 14 & 41 \\
-1 & 32 & 12
\end{array}\right] .
$$

We proved that the column space of every matrix is a vector space.

