Math 544, Exam 2, Fall 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you. There are 10 problems. Each problem is worth 5 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. I will post the solutions on my website shortly after the exam is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{llll}
1 & 2 & 2 & 10 \\
1 & 2 & 3 & 13 \\
2 & 4 & 5 & 23
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right], \quad b=\left[\begin{array}{c}
-1 \\
-2 \\
-3
\end{array}\right] .
$$

2. Let U and V be subspaces of \mathbb{R}^{n}. Does the union $U \cup V$ have to be a subspace of \mathbb{R}^{n} ? If yes, prove your answer. If no, give a counterexample.
3. Let $V=\left\{\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3} \left\lvert\, \begin{array}{l}x_{1}+3 x_{2}+4 x_{3}=0 \\ 2 x_{1}+9 x_{2}+5 x_{3}=0 \\ 5 x_{1}+14 x_{2}+41 x_{3}=0 \\ -x_{1}+32 x_{2}+12 x_{3}=0\end{array}\right.\right\}$. Is V a vector space? Explain thoroughly.
4. Let $V=\left\{\left.\left[\begin{array}{c}x_{1}+3 x_{2}+4 x_{3} \\ 2 x_{1}+9 x_{2}+5 x_{3} \\ 5 x_{1}+14 x_{2}+41 x_{3} \\ -x_{1}+32 x_{2}+12 x_{3}\end{array}\right] \in \mathbb{R}^{4} \right\rvert\, x_{1}, x_{2}, x_{3} \in \mathbb{R}\right\}$. Is V a vector space? Explain thoroughly.
5. Let $V=\left\{\left.\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2} \right\rvert\, x_{1} x_{2}=0\right\}$. Is V a vector space? Explain thoroughly.
6. Define "null space". Use complete sentences. Include everything that is necessary, but nothing more.
7.

(a) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.
(b) Let A be an $n \times n$ matrix. List three statements that are equivalent to the statement " A is non-singular".
8. Let A and B be 2×2 matrices with A not equal to the zero matrix and $A^{2}=A B$. Does A have to equal B ? If yes, prove your answer. If no, give a counterexample.
9. Let A and B be $n \times n$ matrices. At least one of the following statements is always true. Pick a true statement and prove it.
(a) The column space of A is a subset of the column space of $A B$.
(b) The column space of B is a subset of the column space of $A B$.
(c) The column space of $A B$ is a subset of the column space of A.
(d) The column space of $A B$ is a subset of the column space of B.
10. Let A and B be $n \times n$ matrices. At least one of the following statements is always true. Pick a true statement and prove it.
(a) The null space of A is a subset of the null space of $A B$.
(b) The null space of B is a subset of the null space of $A B$.
(c) The null space of $A B$ is a subset of the null space of A.
(d) The null space of $A B$ is a subset of the null space of B.

