Math 544, Exam 1, Fall 2005

Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you. The exam is worth a total of 50 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

I will post the solutions on my website shortly after the exam is finished.

1. (10 points) Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 3 & 1 & 2 & 3 \\
1 & 2 & 3 & 2 & 4 & 6 \\
1 & 2 & 3 & 3 & 6 & 9
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right], \quad b=\left[\begin{array}{c}
9 \\
13 \\
17
\end{array}\right] .
$$

2. (8 points) Consider the system of linear equations.

$$
\begin{aligned}
x_{1}+a x_{2} & =1 \\
(a-1) x_{1}+6 x_{2} & =2 .
\end{aligned}
$$

(a) Which values for a cause the system to have no solution?
(b) Which values for a cause the system to have exactly one solution?
(c) Which values for a cause the system to have an infinite number of solutions?

Explain thoroughly.

3. (8 points) Are the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-1 \\
-1 \\
1 \\
1
\end{array}\right]
$$

linearly independent? Explain thoroughly.
4. (8 points) Recall that the matrix A is symmetric if $A^{\mathrm{T}}=A$. Let A and B be 2×2 symmetric matrices. Does $A B$ have to be symmetric? If yes, prove your answer. If no, give a counterexample.
5. (8 points) Let v_{1}, v_{2}, v_{3} be linearly independent vectors in \mathbb{R}^{5}. Let $w_{1}=$ $v_{1}+v_{2}+v_{3}, w_{2}=v_{1}+v_{3}$, and $w_{3}=v_{2}+v_{3}$. Do the vectors w_{1}, w_{2}, w_{3} have to be linearly independent? If yes, prove your answer. If no, give a counterexample.
6. (8 points) Let A and B be 2×2 matrices. Does the equation $(A-B)(A+B)=$ $A^{2}-B^{2}$ always hold? If yes, prove your answer. if no, give a counterexample.

