Math 544, Exam 3, Spring 2016
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. Let $A=\left[\begin{array}{ccccccc}1 & 4 & -2 & 1 & 5 & 5 & 5 \\ 1 & 4 & -2 & 2 & 8 & 9 & 7 \\ 2 & 8 & -4 & 3 & 13 & 14 & 0 \\ 3 & 12 & -6 & 5 & 21 & 23 & 7\end{array}\right]$.

Find a basis for the null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Express each column of A in terms of your basis for the column space. Express each row of A in terms of your basis for the row space. Check your answer.
2. Define basis. Use complete sentences. Say everything that has to be said and nothing more.
3. Define dimension. Use complete sentences. Say everything that has to be said and nothing more.
4. Let A be an $n \times m$ matrix and V be a subspace of \mathbb{R}^{m}. Define N and C to be the following vector spaces

$$
N=\{v \in V \mid A v=0\} \quad \text { and } \quad C=\{A v \mid v \in V\} .
$$

Let u_{1}, \ldots, u_{p} be vectors in V with $A u_{1}, \ldots, A u_{p}$ a basis for C and let v_{1}, \ldots, v_{q} be a basis for N. Prove that the vectors $u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{q}$ span V. (You will have to write a proof from scratch. We have not proven this particular statement before.)
5. Let $U_{1} \subseteq U_{2} \subseteq U_{3} \subseteq \mathbb{R}^{4}$ be vector spaces. Suppose $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for $\mathbb{R}^{4}, v_{1}, v_{2}, v_{3} \in U_{3}, v_{4} \notin U_{3} ; v_{1}, v_{2} \in U_{2}, v_{3} \notin U_{2} ;$ and $v_{1} \in U_{1}$, $v_{2} \notin U_{1}$. Tell as much as you can about $\operatorname{dim} U_{1}$, $\operatorname{dim} U_{2}$, and $\operatorname{dim} U_{3}$. Prove any statements that you make.

