Math 544, Exam 3, Spring 2016
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. Let $A=\left[\begin{array}{ccccccc}1 & 4 & -2 & 1 & 5 & 5 & 5 \\ 1 & 4 & -2 & 2 & 8 & 9 & 7 \\ 2 & 8 & -4 & 3 & 13 & 14 & 0 \\ 3 & 12 & -6 & 5 & 21 & 23 & 7\end{array}\right]$.

Find a basis for the null space of $A$. Find a basis for the column space of $A$. Find a basis for the row space of $A$. Express each column of $A$ in terms of your basis for the column space. Express each row of $A$ in terms of your basis for the row space. Check your answer.
Apply $R 2 \mapsto R 2-R 1, R 3 \mapsto R 3-2 R 1, R 4 \mapsto R 4-3 R 1$ to obtain

$$
\left[\begin{array}{ccccccc}
1 & 4 & -2 & 1 & 5 & 5 & 5 \\
0 & 0 & 0 & 1 & 3 & 4 & 2 \\
0 & 0 & 0 & 1 & 3 & 4 & -10 \\
0 & 0 & 0 & 2 & 6 & 8 & -8
\end{array}\right] .
$$

Apply $R 1 \mapsto R 1-R 2, R 3 \mapsto R 3-R 2, R 4 \mapsto R 4-2 R 2$ to obtain

$$
\left[\begin{array}{ccccccc}
1 & 4 & -2 & 0 & 2 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & -12 \\
0 & 0 & 0 & 0 & 0 & 0 & -12
\end{array}\right] .
$$

Apply $R 3 \mapsto-(1 / 12) R 3$ to obtain

$$
\left[\begin{array}{ccccccc}
1 & 4 & -2 & 0 & 2 & 1 & 3 \\
0 & 0 & 0 & 1 & 3 & 4 & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & -12
\end{array}\right] .
$$

Apply $R 1 \mapsto R 1-3 R 3, R 2 \mapsto R 2-2 R 3, R 4 \mapsto R 4+12 R 3$ to obtain

$$
\left[\begin{array}{ccccccc}
1 & 4 & -2 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 3 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

We read that the null space of $A$ is equal to the set of vectors

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
2 \\
0 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-2 \\
0 \\
0 \\
-3 \\
1 \\
0 \\
0
\end{array}\right]+x_{6}\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-4 \\
0 \\
1 \\
0
\end{array}\right] .
$$

We conclude that
$v_{1}=\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}2 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], v_{3}=\left[\begin{array}{c}-2 \\ 0 \\ 0 \\ -3 \\ 1 \\ 0 \\ 0\end{array}\right], v_{4}=\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ -4 \\ 0 \\ 1 \\ 0\end{array}\right] \quad$ is a basis for the null space of $A ;$

$$
c_{1}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
3
\end{array}\right], c_{2}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
5
\end{array}\right], c_{3}=\left[\begin{array}{l}
5 \\
7 \\
0 \\
7
\end{array}\right] \quad \text { is a basis for the column space of } A ;
$$

$$
\begin{gathered}
w_{1}=\left[\begin{array}{ccccccc}
1 & 4 & -2 & 0 & 2 & 1 & 0
\end{array}\right], \\
w_{2}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 1 & 3 & 4 & 0
\end{array}\right], \quad \text { is a basis for the row space of } A ; \\
w_{3}=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

column 1 of $A$ is $c_{1}$; column 2 of $A$ is $4 c_{1}$; column 3 of $A$ is $-2 c_{1}$; column 4 of $A$ is $c_{2}$; column 5 of $A$ is $2 c_{1}+3 c_{2}$; column 6 of $A$ is $1 c_{1}+4 c_{2}$; and column 7 of $A$ is $c_{3}$; row 1 of $A$ is $w_{1}+w_{2}+5 w_{3}$; row 2 of $A$ is $w_{1}+2 w_{2}+7 w_{3}$; row 3 of $A$ is $2 w_{1}+3 w_{2}$; and row 4 of $A$ is $3 w_{1}+5 w_{2}+7 w_{3}$.
2. Define basis. Use complete sentences. Say everything that has to be said and nothing more.
A linearly independent subset of a vector space $V$ which also spans $V$ is a basis for $V$.
3. Define dimension. Use complete sentences. Say everything that has to be said and nothing more.
The dimension of a vector space is the number of vectors in a basis for the vector space.
4. Let $A$ be an $n \times m$ matrix and $V$ be a subspace of $\mathbb{R}^{m}$. Define $N$ and $C$ to be the following vector spaces

$$
N=\{v \in V \mid A v=0\} \quad \text { and } \quad C=\{A v \mid v \in V\} .
$$

Let $u_{1}, \ldots, u_{p}$ be vectors in $V$ with $A u_{1}, \ldots, A u_{p}$ a basis for $C$ and let $v_{1}, \ldots, v_{q}$ be a basis for $N$. Prove that the vectors $u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{q}$ span $V$. (You will have to write a proof from scratch. We have not proven this particular statement before.)
Let $v$ be an arbitrary element of $V$. The vector $A v$ is in $C$; so $A v$ can be written in terms of the basis $A u_{1}, \ldots, A u_{p}$ for $C$. In other words, there are scalars $\alpha_{1}, \ldots, \alpha_{p}$ with $A v=\sum_{i=1}^{p} \alpha_{i} A u_{i}$. It follows that $v-\sum_{i=1}^{p} \alpha_{i} u_{i}$ is in $N$. Thus, $v-\sum_{i=1}^{p} \alpha_{i} u_{i}$ can be written in terms of the basis $v_{1}, \ldots, v_{q}$ for $V$. In other words, there are scalars $\beta_{1}, \ldots, \beta_{q}$ with $v-\sum_{i=1}^{p} \alpha_{i} u_{i}=\sum_{j=1}^{q} \beta_{j} v_{j}$. Thus, $v=\sum_{i=1}^{p} \alpha_{i} u_{i}+\sum_{j=1}^{q} \beta_{j} v_{j}$ is in the span of $u_{1}, \ldots, u_{p}, v_{1}, \ldots, v_{q}$.
5. Let $U_{1} \subseteq U_{2} \subseteq U_{3} \subseteq \mathbb{R}^{4}$ be vector spaces. Suppose $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for $\mathbb{R}^{4}, v_{1}, v_{2}, v_{3} \in U_{3}, v_{4} \notin U_{3} ; v_{1}, v_{2} \in U_{2}, v_{3} \notin U_{2}$; and $v_{1} \in U_{1}$, $v_{2} \notin U_{1}$. Tell as much as you can about $\operatorname{dim} U_{1}, \operatorname{dim} U_{2}$, and $\operatorname{dim} U_{3}$. Prove any statements that you make.
We know that $\operatorname{dim} U_{3}=3, \operatorname{dim} U_{2}=2$ and $\operatorname{dim} U_{1}=1$. Start with $U_{3}$. We are told that $U_{3}$ contains three linearly independent vectors (hence $3 \leq \operatorname{dim} U_{3}$ ) and $U_{3}$ is a proper subspace of a 4 -dimensional vector space (hence $\operatorname{dim} U_{3}<4$ ). The only posibility left open is that $\operatorname{dim} U_{3}=3$.

We repeat the above argument twice. We are told that $U_{2}$ contains two linearly independent vectors and $U_{2}$ is a proper subspace of a 3 -dimensional vector space; hence, $2 \leq \operatorname{dim} U_{2}<3$. The only option left is $\operatorname{dim} U_{2}=2$.

Finally, we are told that $U_{1}$ contains linearly independent set of size one and is a proper subspace of a 2 -dimensional vector space. Hence $1 \leq \operatorname{dim} U_{1}<2$. The only option left is $\operatorname{dim} U_{1}=1$.

