Math 544, Exam 3, Spring 2016

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it – I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. SHOW your work. **No Calculators or Cell phones.** Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. Let
$$A = \begin{bmatrix} 1 & 4 & -2 & 1 & 5 & 5 & 5 \\ 1 & 4 & -2 & 2 & 8 & 9 & 7 \\ 2 & 8 & -4 & 3 & 13 & 14 & 0 \\ 3 & 12 & -6 & 5 & 21 & 23 & 7 \end{bmatrix}$$
.

Find a basis for the null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Express each column of Ain terms of your basis for the column space. Express each row of A in terms of your basis for the row space. Check your answer.

Apply $R2 \mapsto R2 - R1$, $R3 \mapsto R3 - 2R1$, $R4 \mapsto R4 - 3R1$ to obtain

Γ1	4	-2	1	5	5	5	
0	0	0	1	3	4	2	
0	0	0	1	3	4	-10	•
L0	0	0	2	6	8	-8	

Apply $R1 \mapsto R1 - R2$, $R3 \mapsto R3 - R2$, $R4 \mapsto R4 - 2R2$ to obtain

Γ1	4	-2	0	2	1	3]
0	0	0	1	3	4	2
0	0	0	0	0	0	-12
Lo	0	0	0	0	0	-12

Apply $R3 \mapsto -(1/12)R3$ to obtain

Γ1	4	-2	0	2	1	3 J	
0	0	0	1	3	4	2	
0	0	0	0	0	0	1	·
LO	0	0	0	0	0	-12	

Apply $R1 \mapsto R1 - 3R3$, $R2 \mapsto R2 - 2R3$, $R4 \mapsto R4 + 12R3$ to obtain

$$\begin{bmatrix} 1 & 4 & -2 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 1 & 3 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

We read that the null space of A is equal to the set of vectors

$$\begin{bmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6\\ x_7 \end{bmatrix} = x_2 \begin{bmatrix} -4\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 2\\ 0\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -2\\ 0\\ 0\\ 0\\ -3\\ 1\\ 0\\ 0 \end{bmatrix} + x_6 \begin{bmatrix} -1\\ 0\\ 0\\ -4\\ 0\\ 1\\ 0 \end{bmatrix}.$$

We conclude that

v_1	$= \begin{bmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$v_2 =$	$\begin{bmatrix} 2\\0\\1\\0\\0\\0\\0\end{bmatrix}, v_3$	$= \begin{bmatrix} -2\\0\\0\\-3\\1\\0\\0 \end{bmatrix}$	$,v_4 = $	$\begin{bmatrix} -1 \\ 0 \\ 0 \\ -4 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	is a basis for the null space of A ;
c	$_{1} = \begin{bmatrix} 1\\ 1\\ 2\\ 3 \end{bmatrix}$	$\left], c_2 = \right]$	$= \begin{bmatrix} 1\\2\\3\\5 \end{bmatrix}$	$, c_3 = \begin{bmatrix} 5\\7\\0\\7 \end{bmatrix}$	is	a ba	asis for the column space of A ;
	$w_1 = w_2 = w_3 = w_3 = w_3$	$\begin{bmatrix} 1 & 4 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	$ \begin{array}{ccc} -2 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} $	$\begin{array}{cccc} 2 & 1 \\ 3 & 4 & 0 \\ 0 & 0 \end{array}$	0], 0], 1]	is a	basis for the row space of A ;

column 1 of A is c_1 ; column 2 of A is $4c_1$; column 3 of A is $-2c_1$; column 4 of A is c_2 ; column 5 of A is $2c_1+3c_2$; column 6 of A is $1c_1+4c_2$; and column 7 of A is c_3 ; row 1 of A is $w_1 + w_2 + 5w_3$; row 2 of A is $w_1 + 2w_2 + 7w_3$; row 3 of A is $2w_1 + 3w_2$; and row 4 of A is $3w_1 + 5w_2 + 7w_3$.

2. Define basis. Use complete sentences. Say everything that has to be said and nothing more.

A linearly independent subset of a vector space V which also spans V is a basis for V.

3. Define dimension. Use complete sentences. Say everything that has to be said and nothing more.

The dimension of a vector space is the number of vectors in a basis for the vector space.

4. Let A be an $n \times m$ matrix and V be a subspace of \mathbb{R}^m . Define N and C to be the following vector spaces

$$N = \{v \in V | Av = 0\}$$
 and $C = \{Av \mid v \in V\}.$

Let u_1, \ldots, u_p be vectors in V with Au_1, \ldots, Au_p a basis for C and let v_1, \ldots, v_q be a basis for N. Prove that the vectors $u_1, \ldots, u_p, v_1, \ldots, v_q$ span V. (You will have to write a proof from scratch. We have not proven this particular statement before.)

Let v be an arbitrary element of V. The vector Av is in C; so Av can be written in terms of the basis Au_1, \ldots, Au_p for C. In other words, there are scalars $\alpha_1, \ldots, \alpha_p$ with $Av = \sum_{i=1}^p \alpha_i Au_i$. It follows that $v - \sum_{i=1}^p \alpha_i u_i$ is in N. Thus, $v - \sum_{i=1}^p \alpha_i u_i$ can be written in terms of the basis v_1, \ldots, v_q for V. In other words, there are scalars β_1, \ldots, β_q with $v - \sum_{i=1}^p \alpha_i u_i = \sum_{j=1}^q \beta_j v_j$. Thus, $v = \sum_{i=1}^p \alpha_i u_i + \sum_{j=1}^q \beta_j v_j$ is in the span of $u_1, \ldots, u_p, v_1, \ldots, v_q$.

5. Let $U_1 \subseteq U_2 \subseteq U_3 \subseteq \mathbb{R}^4$ be vector spaces. Suppose v_1, v_2, v_3, v_4 is a basis for \mathbb{R}^4 , $v_1, v_2, v_3 \in U_3$, $v_4 \notin U_3$; $v_1, v_2 \in U_2$, $v_3 \notin U_2$; and $v_1 \in U_1$, $v_2 \notin U_1$. Tell as much as you can about dim U_1 , dim U_2 , and dim U_3 . Prove any statements that you make.

We know that $\dim U_3 = 3$, $\dim U_2 = 2$ and $\dim U_1 = 1$. Start with U_3 . We are told that U_3 contains three linearly independent vectors (hence $3 \leq \dim U_3$) and U_3 is a proper subspace of a 4-dimensional vector space (hence $\dim U_3 < 4$). The only possibility left open is that $\dim U_3 = 3$.

We repeat the above argument twice. We are told that U_2 contains two linearly independent vectors and U_2 is a proper subspace of a 3-dimensional vector space; hence, $2 \leq \dim U_2 < 3$. The only option left is $\dim U_2 = 2$.

Finally, we are told that U_1 contains linearly independent set of size one and is a proper subspace of a 2-dimensional vector space. Hence $1 \leq \dim U_1 < 2$. The only option left is $\dim U_1 = 1$.