Math 544, Exam 3, Summer 2012
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are 6 problems. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (8 points) Let A be a 3×4 matrix. Suppose that there is a vector v_{0} with the property that every vector v with the property $A v=0$ is a multiple of v_{0}. Is it possible to solve $A x=b$ for all $b \in \mathbb{R}^{3}$? Explain thoroughly.
2. (8 points) Suppose that $W \subseteq V$ are vector spaces and that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for V. Suppose further, that $v_{1} \in W$ but $v_{2} \notin W, v_{3} \notin W$, and $v_{4} \notin W$. List all of the possible values for $\operatorname{dim} W$. Explain thoroughly.
3. (8 points) Let U and V be subspaces of a vector space W and that z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}, and v_{1}, \ldots, v_{t} are vectors in W. Soppose further that z_{1}, \ldots, z_{r} is a basis for the intersection $U \cap V$ of U and $V ; z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}$ is a basis for U and $z_{1}, \ldots, z_{r}, v_{1}, \ldots, v_{t}$ is a basis for V. Prove that the vectors $z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}$ are linearly independent.
4. (8 points) Find a matrix A with $A B$ equal to the identity matrix. You may do the problem anyway you like; in particular, you are welcome to notice that the columns of B form an orthogonal set,

$$
B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -3 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

5. (9 points) Let $A=\left[\begin{array}{ccccccc}1 & 4 & 1 & 5 & 2 & 4 & 6 \\ 1 & 4 & 2 & 10 & 3 & 6 & 9 \\ 1 & 4 & 1 & 5 & 3 & 6 & 9 \\ 3 & 12 & 4 & 20 & 8 & 16 & 24\end{array}\right]$. Find a basis for the null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Express each column of A in terms of your basis for the column space. Express each row of A in terms of your basis for the row space. Check your answer.
6. (9 points) Find an orthogonal basis for the null space of $A=\left[\begin{array}{llll}1 & 2 & 1 & 3\end{array}\right]$. Check your answer.
