Math 544, Exam 3, Summer 2012
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are $\mathbf{6}$ problems. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (8 points) Let A be a 3×4 matrix. Suppose that there is a vector v_{0} with the property that every vector v with the property $A v=0$ is a multiple of v_{0}. Is it possible to solve $A x=b$ for all $b \in \mathbb{R}^{3}$? Explain thoroughly.

YES. The hypothesis about v_{0} says that the nullity of A is 1 . So the rank nullity theorem ensures that the rank of A is 3 . It follows that the column space of A is a 3 -dimensional subspace of \mathbb{R}^{3}. The only 3 -dimensional subspace of \mathbb{R}^{3} is \mathbb{R}^{3} itself. So the column space of A is \mathbb{R}^{3}. This is just a different way of saying that it is possible to solve $A x=b$ for all $b \in \mathbb{R}^{3}$?
2. (8 points) Suppose that $W \subseteq V$ are vector spaces and that $v_{1}, v_{2}, v_{3}, v_{4}$ is a basis for V. Suppose further, that $v_{1} \in W$ but $v_{2} \notin W, v_{3} \notin W$, and $v_{4} \notin W$. List all of the possible values for $\operatorname{dim} W$. Explain thoroughly.

The dimension of W might be 1 , or 2 , or 3 . We are told that W is a nonzero vector space which properly sits in a four dimensional vector space. Thus, $1 \leq \operatorname{dim} W \leq 3$. We give three examples to illustrate that all three possibilities can occur. Take $V=\mathbb{R}^{4}$,

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad v_{4}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Observe that $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent vectors in V. Take

$$
W_{1}=\left\{\left.\left[\begin{array}{c}
a_{1} \tag{and}\\
0 \\
0 \\
0
\end{array}\right] \right\rvert\, a_{1} \in \mathbb{R}\right\}, \quad W_{2}=\left\{\left.\left[\begin{array}{c}
a_{1} \\
a_{2} \\
0 \\
0
\end{array}\right] \right\rvert\, a_{1}, a_{2} \in \mathbb{R}\right\}
$$

$$
W_{3}=\left\{\left.\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
0
\end{array}\right] \right\rvert\, a_{1}, a_{2}, a_{3} \in \mathbb{R}\right\} .
$$

Observe that W_{i} is a vector space of dimension i for each $i, v_{1} \in W_{i}$ for each i, but v_{2}, v_{3} and v_{4} are not in W_{i} for each i.
3. (8 points) Let U and V be subspaces of a vector space W and that $z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}$, and v_{1}, \ldots, v_{t} are vectors in W. Suppose further that z_{1}, \ldots, z_{r} is a basis for the intersection $U \cap V$ of U and V; $z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}$ is a basis for U and $z_{1}, \ldots, z_{r}, v_{1}, \ldots, v_{t}$ is a basis for V. Prove that the vectors $z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}, v_{1}, \ldots, v_{t}$ are linearly independent.

Fix real numbers $a_{1}, \ldots a_{r}, b_{1}, \ldots, b_{s}$, and c_{1}, \ldots, c_{t} with
(\star)

$$
\sum_{i=1}^{r} a_{i} z_{i}+\sum_{i=1}^{s} b_{i} u_{i}+\sum_{i=1}^{t} c_{i} v_{i}=0
$$

Observe that the vector

$$
\sum_{i=1}^{r} a_{i} z_{i}+\sum_{i=1}^{s} b_{i} u_{i}=-\sum_{i=1}^{t} c_{i} v_{i}
$$

is in the intersection $U \cap V$. We know that z_{1}, \ldots, z_{r} is a basis for the intersection $U \cap V$; so there are real numbers $d_{1}, \ldots d_{r}$ with

$$
-\sum_{i=1}^{t} c_{i} v_{i}=\sum_{i=1}^{r} d_{i} z_{i}
$$

It follows that

$$
0=\sum_{i=1}^{t} c_{i} v_{i}+\sum_{i=1}^{r} d_{i} z_{i}
$$

However, $z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}$ is a basis for U; so $z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}$ are linearly independent and therefore, each c_{i} and each d_{i} MUST be zero. Return to (\star) . We have

$$
\sum_{i=1}^{r} a_{i} z_{i}+\sum_{i=1}^{s} b_{i} u_{i}=0
$$

The vectors $z_{1}, \ldots, z_{r}, u_{1}, \ldots, u_{s}$ are linearly independent; hence, each a_{i} and each b_{i} MUST be zero.
4. (8 points) Find a matrix A with $A B$ equal to the identity matrix. You may do the problem anyway you like; in particular, you are welcome to notice that the columns of B form an orthogonal set,

$$
B=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & -3 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

We see that

$$
B^{\mathrm{T}} B=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 12
\end{array}\right]
$$

Multiply both sides by

$$
\left[\begin{array}{ccc}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{12}
\end{array}\right]
$$

to see that

$$
\left[\begin{array}{ccc}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{12}
\end{array}\right] B^{\mathrm{T}} B=I
$$

Take

$$
A=\left[\begin{array}{ccc}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{12}
\end{array}\right] B^{\mathrm{T}}=\left[\begin{array}{cccc}
\frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\
-\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
\frac{1}{12} & \frac{-3}{12} & \frac{1}{12} & \frac{1}{12}
\end{array}\right] .
$$

5. (9 points) Let $A=\left[\begin{array}{ccccccc}1 & 4 & 1 & 5 & 2 & 4 & 6 \\ 1 & 4 & 2 & 10 & 3 & 6 & 9 \\ 1 & 4 & 1 & 5 & 3 & 6 & 9 \\ 3 & 12 & 4 & 20 & 8 & 16 & 24\end{array}\right]$. Find a basis for the
null space of A. Find a basis for the column space of A. Find a basis for the row space of A. Express each column of A in terms of your basis for the column space. Express each row of A in terms of your basis for the row space. Check your answer.

Replace $R 2 \mapsto R 2-R 1, R 3 \mapsto R 3-R 1$, and $R 4 \mapsto R 4-3 R 1$ to obtain:

$$
\left[\begin{array}{lllllll}
1 & 4 & 1 & 5 & 2 & 4 & 6 \\
0 & 0 & 1 & 5 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 5 & 2 & 4 & 6
\end{array}\right]
$$

Replace $R 1 \mapsto R 1-R 2$ and $R 4 \mapsto R 4-R 2$ to obtain:

$$
\left[\begin{array}{lllllll}
1 & 4 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 5 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 1 & 2 & 3
\end{array}\right]
$$

Replace $R 1 \mapsto R 1-R 3, R 2 \mapsto R 2-R 3$, and $R 4 \mapsto R 4-R 3$ to obtain:

$$
\left[\begin{array}{lllllll}
1 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 5 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The null space of A is the set of all vectors $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \\ x_{7}\end{array}\right]$ such that

$$
\begin{aligned}
& x_{1}=-4 x_{2} \\
& x_{2}=x_{2} \\
& x_{3}=\quad-5 x_{4} \\
& x_{4}=\quad x_{4} \\
& x_{5}=\quad-2 x_{6}-3 x_{7} \\
& x_{6}=\quad x_{6} \\
& x_{7}=\quad x_{7} .
\end{aligned}
$$

The vectors
$v_{1}=\left[\begin{array}{c}-4 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], \quad v_{2}=\left[\begin{array}{c}0 \\ 0 \\ -5 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right], \quad v_{3}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ -2 \\ 1 \\ 0\end{array}\right], \quad v_{4}=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ -3 \\ 0 \\ 1\end{array}\right]$
are a basis for the null space of A.

The vectors

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
3
\end{array}\right], \quad u_{2}=\left[\begin{array}{l}
1 \\
2 \\
1 \\
4
\end{array}\right], \quad u_{3}=\left[\begin{array}{l}
2 \\
3 \\
3 \\
8
\end{array}\right]
$$

are a basis for the column space of A. We see that

$$
\begin{aligned}
& \text { col } 1 \text { of } A=u_{1} \\
& \operatorname{col} 2 \text { of } A=4 u_{1} \\
& \operatorname{col} 3 \text { of } A=u_{2} \\
& \operatorname{col} 4 \text { of } A=5 u_{2} \\
& \operatorname{col} 5 \text { of } A=u_{3} \\
& \operatorname{col} 6 \text { of } A=2 u_{3} \\
& \operatorname{col} 7 \text { of } A=3 u_{3}
\end{aligned}
$$

A basis for the row space of A is

$$
\begin{aligned}
w_{1} & =\left[\begin{array}{lllllll}
1 & 4 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
w_{2} & =\left[\begin{array}{lllllll}
0 & 0 & 1 & 5 & 0 & 0 & 0
\end{array}\right] \\
w_{3} & =\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

We see that

$$
\begin{aligned}
& \text { row } 1 \text { of } A=1 w_{1}+1 w_{2}+2 w_{3} \\
& \text { row } 2 \text { of } A=1 w_{1}+2 w_{2}+3 w_{3} \\
& \text { row } 3 \text { of } A=1 w_{1}+1 w_{2}+3 w_{3} \\
& \text { row } 4 \text { of } A=3 w_{1}+4 w_{2}+8 w_{3} \\
& \hline
\end{aligned}
$$

6. (9 points) Find an orthogonal basis for the null space of $A=$ $\left[\begin{array}{llll}1 & 2 & 1 & 3\end{array}\right]$. Check your answer.

One basis for the null space of A is

$$
v_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-3 \\
0 \\
0 \\
1
\end{array}\right]
$$

Let $u_{1}=v_{1}$. Let

$$
u_{2}^{\prime}=v_{2}-\frac{u_{1}^{\mathrm{T}} v_{2}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}=\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]-\frac{2}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right] .
$$

Let $u_{2}=5 u_{2}^{\prime}=\left[\begin{array}{c}-1 \\ -2 \\ 5 \\ 0\end{array}\right]$. We verify that u_{2} is in the null space of A and $u_{2}^{\mathrm{T}} u_{1}=0$. Let

$$
\begin{aligned}
& u_{3}^{\prime}=v_{3}-\frac{u_{1}^{\mathrm{T}} v_{3}}{u_{1}^{\mathrm{T}} u_{1}} u_{1}-\frac{u_{2}^{\mathrm{T}} v_{3}}{u_{2}^{\mathrm{T}} u_{2}} u_{2}=\left[\begin{array}{c}
-3 \\
0 \\
0 \\
1
\end{array}\right]-\frac{6}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]-\frac{3}{30}\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
-3 \\
0 \\
0 \\
1
\end{array}\right]-\frac{6}{5}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]-\frac{1}{10}\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right]=\frac{1}{10}\left[\begin{array}{c}
-5 \\
-10 \\
-5 \\
10
\end{array}\right]=\frac{5}{10}\left[\begin{array}{c}
-1 \\
-2 \\
-1 \\
2
\end{array}\right] .
\end{aligned}
$$

Let

$$
u_{3}=10 u_{3}^{\prime}=\left[\begin{array}{c}
-1 \\
-2 \\
-1 \\
2
\end{array}\right]
$$

Thus

$$
u_{1}=\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
-1 \\
-2 \\
5 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
-1 \\
-2 \\
-1 \\
2
\end{array}\right]
$$

is an orthogonal basis for the null space of A. Be sure to verify that $A u_{i}=0$ and $u_{i}^{\mathrm{T}} u_{j}=0$ for $i \neq j$.

