Math 544, Exam 3, Spring 2011

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are $\mathbf{8}$ problems on TWO SIDES. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website.

Please Note: The next quiz will be Thursday.
Please Note: In this exam, if V is a subset of \mathbb{R}^{n} for some n, then the phrases: " V is a subspace of \mathbb{R}^{n} " and " V is a vector space" have exactly the same meaning.

1. (7 points) Define "dimension". Use complete sentences. Include everything that is necessary, but nothing more.
2. (7 points) Define "basis". Use complete sentences. Include everything that is necessary, but nothing more.
3. (6 points) Define "subspace of \mathbb{R}^{n} ". Use complete sentences. Include everything that is necessary, but nothing more.
4. (6 points) State the Four Theorems about Dimension. Use complete sentences. Include everything that is necessary, but nothing more.
5. (6 points) Let

$$
V=\left\{\left.\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a b=0\right\} .
$$

Is V a vector space? If yes, prove your answer. If no, give an example which shows why V is not a vector space. Record a thorough answer. Use complete sentences.

There are more problems on the other side.
6. (6 points) Let W be a subspace of \mathbb{R}^{n} and A be an $m \times n$ matrix. Let

$$
V=\{A w \mid w \in W\} .
$$

Is V a vector space? If yes, prove your answer. If no, give an example which shows why V is not a vector space. Record a thorough answer. Use complete sentences.
7. (6 points) Let A and B be $n \times n$ matrices with B non-singular. Does the column space of $B A$ have to equal the column space of A ? Prove your answer very thoroughly. Use complete sentences.
8. (6 points) Let A and B be $n \times n$ matrices with B non-singular. Does the dimension of the column space of of $B A$ have to equal the dimension of the column space of A ? Prove your answer very thoroughly. Use complete sentences.

