Math 544, Exam 2, Fall 2009
Write your answers as legibly as you can.
There are 7 problems. Problem 7 is worth 22 points. Each of the other problems is worth 13 points. The exam is worth a total of 100 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

I will post the solutions on my website shortly after the class is finished.

1. Let $U \subseteq V$ be subspaces of \mathbb{R}^{n} with $\operatorname{dim} U=\operatorname{dim} V$. Do U and V HAVE to be equal? If yes, prove your answer. If no, give an example.

YES. Let u_{1}, \ldots, u_{r} be a basis for U. Thus u_{1}, \ldots, u_{r} is a linearly independent set in the vector space V. One of the dimension theorems tells us that u_{1}, \ldots, u_{r} is the begining of a basis for V; that is, we may adjoin more vectors to this list, if necessary, to get a basis for V. However every basis for V has $\operatorname{dim} V$ vectors and $\operatorname{dim} V=\operatorname{dim} U=r$. Thus, u_{1}, \ldots, u_{r} is already a basis for V. Thus U and V are both spanned by u_{1}, \ldots, u_{r} and $U=V$.
2. Let A and B be $n \times n$ matrices. Does the null space of $A B$ HAVE to be a subset of the null space of A ? If yes, prove your answer. If no, give an example.

NO. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

So,

$$
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

We see that $v=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is in the null space of $A B$, because $A B v=0$; but v is not in the null space of A, because $A v=v \neq 0$.
3. Define "null space". Use complete sentences. Include everything that is necessary, but nothing more.

The null space of the matrix A is the set of all column vectors x with $A x=0$.
4. Define "dimension". Use complete sentences. Include everything that is necessary, but nothing more.

The dimension of the vector space V is the number of vectors in a basis for V.
5. Let

$$
V=\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, 2 x_{1}+3 x_{3}-4 x_{3}=5\right\}
$$

Is V a vector space? Explain thoroughly.
NO. The vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in V.
6. Let $a=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $b=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ be fixed elements of \mathbb{R}^{3}, and let

$$
V=\left\{\left.x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a^{\mathrm{T}} x=0 \text { and } b^{\mathrm{T}} x=0\right\} .
$$

Is V a vector space? Explain thoroughly.
YES. The set V is the null space of

$$
\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right]
$$

The null space of any matrix is a vector space.
7. Let A be the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 3 & 4 & 2 & 4 \\
1 & 3 & 4 & 3 & 6 \\
2 & 6 & 8 & 5 & 10
\end{array}\right]
$$

(a) Find a basis for the null space of A.
(b) Find a basis for the column space of A.
(c) Find a basis for the row space of A.
(d) Write each column of A as a linear combination of your answer to (b).
(e) Write each row of A as a linear combination of your answer to (c).

Apply elementary row operations $R_{2} \mapsto R_{2}-R_{1}$ and $R_{3} \mapsto R_{3}-2 R_{1}$ to get

$$
\left[\begin{array}{lllll}
1 & 3 & 4 & 2 & 4 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

Apply elementary row operations $R_{1} \mapsto R_{1}-2 R_{2}$ and $R_{3} \mapsto R_{3}-R_{2}$ to get

$$
\left[\begin{array}{lllll}
1 & 3 & 4 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The nullspace of A is the set of all vectors:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

where x_{2}, x_{3}, and x_{5} are free to take any value.
(a) It follows that the vectors

$$
v_{1}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
0 \\
0
\end{array}\right], \quad \text { and } \quad v_{3}=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

form a basis for the null space of A.
(b) The vectors

$$
A_{*, 1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \text { and } \quad A_{*, 4}=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]
$$

form a basis for the column space of A.
(c) The vectors

$$
w_{1}=\left[\begin{array}{lllll}
1 & 3 & 4 & 0 & 0
\end{array}\right] \quad \text { and } \quad w_{2}=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

form a basis for the row space of A.
(d) We see that

$$
\begin{array}{|c|}
\hline A_{*, 1}=A_{*, 1} \\
A_{*, 2}=3 A_{*, 1} \\
A_{*, 3}=4 A_{*, 1} \\
A_{*, 4}=A_{*, 4} \\
A_{*, 5}=2 A_{*, 4} \\
\hline
\end{array}
$$

(e) We see that

$$
\begin{array}{|c|}
\hline A_{1, *}=1 w_{1}+2 w_{2} \\
A_{2, *}=w_{1}+3 w_{2} \\
A_{3, *}=2 w_{1}+5 w_{2} \\
\hline
\end{array} .
$$

