Math 544, Exam 2, Summer 2012
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are 8 problems. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (6 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.

The $n \times n$ matrix A is non-singular if the only vector x in \mathbb{R}^{n} with $A x=0$ is $x=0$.
2. (7 points) Let A be an $n \times n$ matrix. List three statements that are equivalent to the statement " A is non-singular". Please do not repeat your answer to problem 1 and only use statements that we have studied thoroughly.

1. The columns of A are linearly independent.
2. The system of equations $A x=b$ has a unique solution for every b in \mathbb{R}^{n}.
3. The matrix A is invertible.
4. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{n} are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
4. (6 points) Suppose that v_{1}, v_{2}, and v_{3} are linearly independent vectors in \mathbb{R}^{n} and M is an $n \times n$ matrix. Do the vectors $M v_{1}, M v_{2}, M v_{3}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.
NO! Take $v_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], \quad v_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$, and $M=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. We see that v_{1}, v_{2}, v_{3} are linearly independent; but $M v_{1}, M v_{2}, M v_{3}$ are linearly dependent.
5. (6 points) Let v_{1}, v_{2}, and v_{3} be vectors in \mathbb{R}^{n} and M be an $n \times n$ matrix. Suppose the vectors $M v_{1}, M v_{2}, M v_{3}$ are linearly independent. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

YES! Let c_{1}, c_{2}, and c_{3} be numbers with $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. Multiply by M and distribute to see that $c_{1} M v_{1}+c_{2} M v_{2}+c_{3} M v_{3}=0$. The vectors $M v_{1}$, $M v_{2}, M v_{3}$ are linearly independent; hence, $c_{1}=c_{2}=c_{3}$.
6. (6 points) Suppose that v_{1}, v_{2}, and v_{3} are linearly independent vectors in \mathbb{R}^{n} and M is an invertible $n \times n$ matrix. Do the vectors $M v_{1}, M v_{2}$, $M v_{3}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

YES! Let c_{1}, c_{2}, and c_{3} be numbers with $c_{1} M v_{1}+c_{2} M v_{2}+c_{3} M v_{3}=0$. Multiply by M^{-1} and distribute to see that $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. The vectors v_{1}, v_{2}, v_{3} are linearly independent; hence, $c_{1}=c_{2}=c_{3}$.
7. (6 points) Let A be the matrix $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. What is the inverse of A ? Please make sure that your answer is correct.

The inverse of A is $A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}4 & -2 \\ -3 & 1\end{array}\right]$. We check that $A A^{-1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
8. (6 points) Let $V=\left\{\left.\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3} \right\rvert\, a b=0\right\}$? Is V a vector space? If yes, prove it. If not, illustrate with an example.
NO! We see that $v_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are both in V, but $v_{1}+v_{2}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$ is not in V.

