Math 544, Exam 2, Summer 2012

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are 8 problems. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (6 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.

The $n \times n$ matrix A is <u>non-singular</u> if the only vector x in \mathbb{R}^n with Ax = 0 is x = 0.

- 2. (7 points) Let A be an $n \times n$ matrix. List three statements that are equivalent to the statement "A is non-singular". Please do not repeat your answer to problem 1 and only use statements that we have studied thoroughly.
 - 1. The columns of A are linearly independent.
 - 2. The system of equations Ax = b has a unique solution for every b in \mathbb{R}^n .
 - 3. The matrix A is invertible.

3. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_1, \ldots, v_p in \mathbb{R}^n are *linearly independent* if the only numbers c_1, \ldots, c_p with $\sum_{i=1}^p c_i v_i = 0$ are $c_1 = c_2 = \cdots = c_p = 0$.

4. (6 points) Suppose that v_1 , v_2 , and v_3 are linearly independent vectors in \mathbb{R}^n and M is an $n \times n$ matrix. Do the vectors Mv_1 , Mv_2 , Mv_3 have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

NO! Take
$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$, and $M = \begin{bmatrix} 0 & 0 & 0\\0 & 0 & 0\\0 & 0 & 0 \end{bmatrix}$. We see that v_1, v_2, v_3 are linearly independent; but Mv_1 , Mv_2 , Mv_3 are linearly dependent.

5. (6 points) Let v_1 , v_2 , and v_3 be vectors in \mathbb{R}^n and M be an $n \times n$ matrix. Suppose the vectors Mv_1 , Mv_2 , Mv_3 are linearly independent. Do the vectors v_1 , v_2 , v_3 have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

YES! Let c_1 , c_2 , and c_3 be numbers with $c_1v_1 + c_2v_2 + c_3v_3 = 0$. Multiply by M and distribute to see that $c_1Mv_1 + c_2Mv_2 + c_3Mv_3 = 0$. The vectors Mv_1 , Mv_2 , Mv_3 are linearly independent; hence, $c_1 = c_2 = c_3$.

6. (6 points) Suppose that v_1 , v_2 , and v_3 are linearly independent vectors in \mathbb{R}^n and M is an invertible $n \times n$ matrix. Do the vectors Mv_1 , Mv_2 , Mv_3 have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

YES! Let c_1 , c_2 , and c_3 be numbers with $c_1Mv_1+c_2Mv_2+c_3Mv_3=0$. Multiply by M^{-1} and distribute to see that $c_1v_1+c_2v_2+c_3v_3=0$. The vectors v_1 , v_2 , v_3 are linearly independent; hence, $c_1 = c_2 = c_3$.

7. (6 points) Let A be the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. What is the inverse of A? Please make sure that your answer is correct.

The inverse of A is
$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix}$$
. We check that $AA^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

8. (6 points) Let $V = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3 \ | \ ab = 0 \right\}$? Is V a vector space? If yes, prove it. If not, illustrate with an example.

NO! We see that $v_1 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$ are both in V, but $v_1 + v_2 = \begin{bmatrix} 1\\1\\2 \end{bmatrix}$ is not in V.