Math 544, Exam 1, Spring 2016
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. Each problem is worth 10 points. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations. $C I R C L E$ your answer.

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 0 \\
1 & 2 & 3 & 1 & 4 & 0 \\
2 & 4 & 6 & 1 & 4 & 1
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right], \quad b=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

2. Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.
3. Consider the system of equations $A x=b$ where $A=\left[\begin{array}{ll}1 & -a \\ a & -1\end{array}\right], x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $b=\left[\begin{array}{c}3 \\ 4 a-1\end{array}\right]$.
(a) For which values of a does the system of equations have no solution?
(b) For which values of a does the system of equations have exactly one solution?
(c) For which values of a does the system of equations have more than sone solution?
4. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be linearly independent vectors in \mathbb{R}^{m}, for some m. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, prove the statement. If no give an example.
5. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be linearly dependent vectors in \mathbb{R}^{m}, for some m. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly dependent? If yes, prove the statement. If no give an example.
