Math 544, Exam 1, Spring 2016
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. Each problem is worth 10 points. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations. $C I R C L E$ your answer.

$$
A=\left[\begin{array}{llllll}
1 & 2 & 3 & 0 & 0 & 0 \\
1 & 2 & 3 & 1 & 4 & 0 \\
2 & 4 & 6 & 1 & 4 & 1
\end{array}\right], \quad x=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right], \quad b=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
$$

We apply the row operations $R 2 \mapsto R 2-R 1$ and $R 3 \mapsto R 3-2 R 1$ to

$$
\left[\begin{array}{cccccc|c}
1 & 2 & 3 & 0 & 0 & 0 & -1 \\
1 & 2 & 3 & 1 & 4 & 0 & 0 \\
2 & 4 & 6 & 1 & 4 & 1 & 1
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{llllll|c}
1 & 2 & 3 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 & 0 & 1 \\
0 & 0 & 0 & 1 & 4 & 1 & 3
\end{array}\right] .
$$

Apply the row operation $R 3 \mapsto R 3-R 2$ to obtain

$$
\left[\begin{array}{llllll|c}
1 & 2 & 3 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 4 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

The general solution of the system of equations is

$$
\left\{\left.\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
0 \\
2
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-3 \\
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
0 \\
0 \\
-4 \\
1 \\
0
\end{array}\right] \right\rvert\, x_{2}, x_{3}, \text { and } x_{5} \text { are arbitrary }\right\}
$$

Some specific solutions are

$$
\left\{v_{1}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
1 \\
0 \\
2
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
1 \\
0 \\
2
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
1 \\
0 \\
2
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
-1 \\
0 \\
0 \\
-3 \\
1 \\
2
\end{array}\right]\right\}
$$

(In v_{1} we took $x_{2}=x_{3}=x_{5}=0$. In v_{2} we took $x_{2}=1$ and $x_{3}=x_{5}=0$. In v_{3} we took $x_{3}=1$ and $x_{2}=x_{5}=0$. In v_{4} we took $x_{5}=1$ and $x_{2}=x_{3}=0$.) Observe that $A v_{i}=b$ for $1 \leq i \leq 4$.
2. Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{n} are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3. Consider the system of equations $A x=b$ where $A=\left[\begin{array}{ll}1 & -a \\ a & -1\end{array}\right]$,

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], \text { and } b=\left[\begin{array}{c}
3 \\
4 a-1
\end{array}\right] .
$$

We apply the row operation $R 2 \mapsto R 2-a R 1$ to

$$
\left[\begin{array}{cc|c}
1 & -a & 3 \\
a & -1 & 4 a-1
\end{array}\right]
$$

to obtain

$$
\left[\begin{array}{cc|c}
1 & -a & 3 \tag{*}\\
0 & a^{2}-1 & a-1
\end{array}\right]
$$

We see that if $a^{2}-1$ is not zero, then the system of equations has a unique solution. In other words, if a is not equal to 1 or -1 , then the system has a unique solution. If $a=1$, then the matrix $\left({ }^{*}\right)$ is

$$
\left[\begin{array}{cc|c}
1 & -1 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

and the system of equations has many solutions. If $a=-1$, then the matrix $\left(^{*}\right)$ is

$$
\left[\begin{array}{cc|c}
1 & 1 & 3 \\
0 & 0 & -2
\end{array}\right]
$$

and the system of equations does not have any solutions.
(a) For which values of a does the system of equations have no solution? If $a=-1$, then the system of equations does not have any solutions.
(b) For which values of a does the system of equations have exactly one solution? If a is not equal to 1 or -1 , then the system has a unique solution.
(c) For which values of a does the system of equations have more than one solution? If $a=1$, then the system of equations has many solutions.
4. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be linearly independent vectors in \mathbb{R}^{m}, for some m. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, prove the statement. If no give an example.

YES. Suppose a_{1}, a_{2} and a_{3} are numbers with $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$. Let $a_{4}=0$. We also have $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+a_{4} v_{4}=0$. The vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly independent; hence all four coefficients $a_{1}, a_{2}, a_{3}, a_{4}$ must be zero. In particular, the coefficients a_{1}, a_{2}, and a_{3} must be zero and the vectors v_{1}, v_{2}, v_{3} are linearly independent.
5. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be linearly dependent vectors in \mathbb{R}^{m}, for some m. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly dependent? If yes, prove the statement. If no give an example.

NO. Consider the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad v_{4}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

We see that $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent

$$
\text { (because } 1 v_{1}+1 v_{2}+1 v_{3}-v_{4}=0 \text {) }
$$

but v_{1}, v_{2}, v_{3} are linearly independent because if $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$, then

$$
\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and all three coefficients c_{i} must be zero.

