Math 544, Exam 1, Summer 2012
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. There are $\mathbf{7}$ problems on TWO SIDES. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (8 points) Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations. $C I R C L E$ your answer.

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 7 & 1 \\
1 & 2 & 2 & 10 & 1 \\
1 & 2 & 1 & 7 & 2
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad b=\left[\begin{array}{c}
15 \\
20 \\
21
\end{array}\right] .
$$

2. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.
3. (7 points) Let A and B be 2×2 matrices with A not equal to the zero matrix and $B A=A^{2}$. Does B have to equal A ? If yes, prove your answer. If no, give a counterexample.
4. (7 points) Let A and B be 2×2 symmetric matrices. Does the product $A B$ have to be a symmetric matrix? If yes, prove your answer. If no, give a counterexample.
5. (7 points) Let v_{1}, v_{2}, v_{3} be linearly independent vectors in \mathbb{R}^{3}. Define $v_{1}^{*}, v_{2}^{*}, v_{3}^{*}$ to be the vectors

$$
v_{1}^{*}=\left[\begin{array}{c}
v_{1} \\
1
\end{array}\right], \quad v_{2}^{*}=\left[\begin{array}{c}
v_{2} \\
1
\end{array}\right], \quad v_{3}^{*}=\left[\begin{array}{c}
v_{3} \\
1
\end{array}\right]
$$

in \mathbb{R}^{4}. Do the vectors $v_{1}^{*}, v_{2}^{*}, v_{3}^{*}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.
There are more problems on the other side.
6. (7 points) Consider the system of linear equations.

$$
\begin{array}{rlr}
x_{1}+(a-1) x_{2} & =4 \\
a x_{1}+\quad 6 x_{2} & =12 .
\end{array}
$$

(a) Which values for a cause the system to have no solution?
(b) Which values for a cause the system to have exactly one solution?
(c) Which values for a cause the system to have an infinite number of solutions?

Explain thoroughly.

7. (7 points) Are the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

linearly independent? Explain thoroughly.

