Math 544, Exam 1, Summer 2012
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are 7 problems on TWO SIDES. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (8 points) Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations. $C I R C L E$ your answer.

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 1 & 7 & 1 \\
1 & 2 & 2 & 10 & 1 \\
1 & 2 & 1 & 7 & 2
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad b=\left[\begin{array}{c}
15 \\
20 \\
21
\end{array}\right]
$$

We apply row operations to

$$
\left[\begin{array}{ccccc|c}
1 & 2 & 1 & 7 & 1 & 15 \\
1 & 2 & 2 & 10 & 1 & 20 \\
1 & 2 & 1 & 7 & 2 & 21
\end{array}\right]
$$

Replace row 2 by row 2 minus row 1 . Replace row 3 by row 3 minus row 1 .

$$
\left[\begin{array}{ccccc|c}
1 & 2 & 1 & 7 & 1 & 15 \\
0 & 0 & 1 & 3 & 0 & 5 \\
0 & 0 & 0 & 0 & 1 & 6
\end{array}\right]
$$

Replace row 1 by row 1 minus row 2 .

$$
\left[\begin{array}{ccccc|c}
1 & 2 & 0 & 4 & 1 & 10 \\
0 & 0 & 1 & 3 & 0 & 5 \\
0 & 0 & 0 & 0 & 1 & 6
\end{array}\right]
$$

Replace row 1 by row 1 minus row 3 .

$$
\left[\begin{array}{lllll|l}
1 & 2 & 0 & 4 & 0 & 4 \\
0 & 0 & 1 & 3 & 0 & 5 \\
0 & 0 & 0 & 0 & 1 & 6
\end{array}\right]
$$

The General solution of $A x=b$ is

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
5 \\
0 \\
6
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-4 \\
0 \\
-3 \\
1 \\
0
\end{array}\right],
$$

where x_{2} and x_{4} are arbitrary.
One particular solution occurs $x_{2}=x_{4}=0$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
5 \\
0 \\
6
\end{array}\right] .
$$

We verify that

$$
\left[\begin{array}{ccccc}
1 & 2 & 1 & 7 & 1 \\
1 & 2 & 2 & 10 & 1 \\
1 & 2 & 1 & 7 & 2
\end{array}\right]\left[\begin{array}{l}
4 \\
0 \\
5 \\
0 \\
6
\end{array}\right]=\left[\begin{array}{l}
15 \\
20 \\
21
\end{array}\right]
$$

A second solution occurs when $x_{2}=1$ and $x_{4}=0$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
5 \\
0 \\
6
\end{array}\right]
$$

We verify that

$$
\left[\begin{array}{ccccc}
1 & 2 & 1 & 7 & 1 \\
1 & 2 & 2 & 10 & 1 \\
1 & 2 & 1 & 7 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
5 \\
0 \\
6
\end{array}\right]=\left[\begin{array}{l}
15 \\
20 \\
21
\end{array}\right]
$$

A third solution occurs when $x_{2}=0$ and $x_{4}=1$:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
2 \\
1 \\
6
\end{array}\right] .
$$

We verify that

$$
\left[\begin{array}{ccccc}
1 & 2 & 1 & 7 & 1 \\
1 & 2 & 2 & 10 & 1 \\
1 & 2 & 1 & 7 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
2 \\
1 \\
6
\end{array}\right]=\left[\begin{array}{l}
15 \\
20 \\
21
\end{array}\right] .
$$

2. (7 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{n} are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3. (7 points) Let A and B be 2×2 matrices with A not equal to the zero matrix and $B A=A^{2}$. Does B have to equal A ? If yes, prove your answer. If no, give a counterexample.
NO. Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}3 & 1 \\ -2 & 6\end{array}\right]$. We see that A is not the zero matrix, A is not equal to B, but A^{2} and $B A$ both are equal to $\left[\begin{array}{cc}5 & 10 \\ 10 & 20\end{array}\right]$.
4. (7 points) Let A and B be 2×2 symmetric matrices. Does the product $A B$ have to be a symmetric matrix? If yes, prove your answer. If no, give a counterexample.

NO . Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 3 \\ 3 & 0\end{array}\right]$. We see that A and B are symmetric; but $A B=\left[\begin{array}{cc}7 & 3 \\ 11 & 6\end{array}\right]$ is not symmetric.
5. (7 points) Let v_{1}, v_{2}, v_{3} be linearly independent vectors in \mathbb{R}^{3}. Define $v_{1}^{*}, v_{2}^{*}, v_{3}^{*}$ to be the vectors

$$
v_{1}^{*}=\left[\begin{array}{c}
v_{1} \\
1
\end{array}\right], \quad v_{2}^{*}=\left[\begin{array}{c}
v_{2} \\
1
\end{array}\right], \quad v_{3}^{*}=\left[\begin{array}{c}
v_{3} \\
1
\end{array}\right]
$$

in \mathbb{R}^{4}. Do the vectors $v_{1}^{*}, v_{2}^{*}, v_{3}^{*}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

The vectors $v_{1}^{*}, v_{2}^{*}, v_{3}^{*}$ are linearly independent. If c_{1}, c_{2}, and c_{3} are numbers with $c_{1} v_{1}^{*}+c_{2} v_{2}^{*}+c_{3} v_{3}^{*}=0$, then in particular, by looking only at the top three rows, we see that $c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0$. However the vectors v_{1}, v_{2}, v_{3} are linearly independent; so, c_{1}, c_{2}, and c_{3} are required to be zero.
6. (7 points) Consider the system of linear equations.

$$
\begin{aligned}
x_{1}+(a-1) x_{2} & =4 \\
a x_{1}+\quad 6 x_{2} & =12 .
\end{aligned}
$$

(a) Which values for a cause the system to have no solution?
(b) Which values for a cause the system to have exactly one solution?
(c) Which values for a cause the system to have an infinite number of solutions?
Explain thoroughly.
Consider the augmented matrix

$$
\left[\begin{array}{cc|c}
1 & a-1 & 4 \\
a & 6 & 12
\end{array}\right]
$$

Replace row 2 by row 2 minus a times row 1 to get:

$$
\left[\begin{array}{cc|c}
1 & a-1 & 4 \\
0 & 6-a(a-1) & 12-4 a
\end{array}\right]
$$

Multiply row 2 by -1 to get

$$
\left[\begin{array}{cc|c}
1 & a-1 & 4 \\
0 & a^{2}-a-6 & 4 a-12
\end{array}\right]
$$

which is the same as

$$
\left[\begin{array}{cc|c}
1 & a-1 & 4 \\
0 & (a-3)(a+2) & 4(a-3)
\end{array}\right] .
$$

We see that if a is any number other than 3 or -2 , then the system of equations has a unique solution. (In this case the bottom row tells the value of x_{2} and the top row tells the value of x_{1}.) If $a=3$, then the bottom row is completely zero and the solution set is the line described by the top equation. If $a=-2$, then the system of equations has no solution because 0 is never equal to -20 . To summarize:
(a) If $a=-2$, then the system of equations has no solution.
(b) If $a \neq-2$ and $a \neq 3$, then the system of equations has exactly one solution.
(b) If $a=3$, then the system of equations has an infinite number of solutions.

7. (7 points) Are the vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
7 \\
8 \\
9
\end{array}\right]
$$

linearly independent? Explain thoroughly.

We find all c_{1}, c_{2}, c_{3} with

$$
c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3}=0
$$

by applying Elementary Row Operations to

$$
\left[\begin{array}{lll}
1 & 4 & 7 \\
2 & 5 & 8 \\
3 & 6 & 9
\end{array}\right]
$$

Replace row 2 with row 2 minus 2 times row 1 . Replace row 3 with row 3 minus 3 times row 1.

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & -3 & -6 \\
0 & -6 & -12
\end{array}\right]
$$

Replace row 2 with minus one third of row 2 :

$$
\left[\begin{array}{ccc}
1 & 4 & 7 \\
0 & 1 & 2 \\
0 & -6 & -12
\end{array}\right]
$$

Replace row 1 with row 1 minus 4 row 2 . Replace row 3 with row 3 plus 6 row 2 :

$$
\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

Thus, c_{3} is free to take any value and $c_{1}=c_{3}$ and $c_{2}=-2 c_{3}$. In particular, take $c_{3}=1$. It is indeed true that $v_{1}-2 v_{2}+v_{3}=0$. Thus,
v_{1}, v_{2}, v_{3} is a linearly dependent collection of vectors.

