Math 544, Exam 1, \quad Spring 2011

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are $\mathbf{9}$ problems on TWO SIDES. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (10 points) Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations. CIRCLE your answer.

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad b=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]
$$

2. (5 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.
3. (5 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.
4. (5 points) State the result about the linear dependence or linear independence p vectors in \mathbb{R}^{m}. Include everything that is necessary, but nothing more.
5. (5 points) Let A be a non-singular $n \times n$ matrix and let b be an element of \mathbb{R}^{n}. Prove that $A x=b$ has at least one solution. (I want a complete proof. The answer "We did this in class" is not acceptable.)
6. (5 points) Let A, B, and C be 2×2 matrices with A not equal to the zero matrix and $B A=C A$. Does B have to equal C ? If yes, prove your answer. If no, give a counterexample.
7. (5 points) Let A and B be 2×2 matrices. Does $(A+B)(A-B)$ have to equal $A^{2}-B^{2}$? If yes, prove your answer. If no, give a counterexample.

There are more problems on the other side.

8. (5 points) Let A and B be $n \times n$ matrices. How is $(A B)^{\mathrm{T}}$ related to the product of A^{T} and B^{T} ? Prove that your answer is correct.
9. (5 points) Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{4} with v_{1}, v_{2}, v_{3} linearly dependent. Do $v_{1}, v_{2}, v_{3}, v_{4}$ have to be linearly dependent? If yes, prove your answer. If no, give a counterexample.
