Math 544, Exam 1, Spring 2011 Solutions
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.

The exam is worth 50 points. There are $\mathbf{9}$ problems on TWO SIDES. SHOW your work. No Calculators or Cell phones. Write your answers as legibly as you can. Make your work be coherent and clear. Write in complete sentences. I will post the solutions on my website shortly after the exam is finished.

1. (10 points) Find the GENERAL solution of the system of linear equations $A x=b$. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations. $C I R C L E$ your answer.

$$
A=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right], \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right], \quad b=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]
$$

We apply row operations to

$$
\left[\begin{array}{ccccc|c}
1 & 4 & 5 & 1 & 8 & 3 \\
1 & 4 & 5 & 2 & 10 & 5 \\
3 & 12 & 15 & 4 & 26 & 11
\end{array}\right] .
$$

Replace $R 2 \mapsto R 2-R 1$ and $R 3 \mapsto R 3-3 R 1$ to get

$$
\left[\begin{array}{lllll|l}
1 & 4 & 5 & 1 & 8 & 3 \\
0 & 0 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 1 & 2 & 2
\end{array}\right] .
$$

Replace $R 1 \mapsto R 1-R 2$ and $R 3 \mapsto R 3-R 2$ to get

$$
\left[\begin{array}{lllll|l}
1 & 4 & 5 & 0 & 6 & 1 \\
0 & 0 & 0 & 1 & 2 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

The general solution of the system of equations is

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-4 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-6 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]} \\
& \text { where } x_{2}, x_{3} \text {, and } x_{5} \text { are free to take any value. }
\end{aligned}
$$

To obtain particular solutions of the system of equations, take $x_{2}=x_{3}=x_{5}=1$ to obtain $v_{1} ; x_{2}=1, x_{3}=x_{5}=0$ to obtain $v_{2} ; x_{2}=x_{5}=0, x_{3}=1$ to obtain v_{3} and $x_{2}=x_{3}=0, x_{5}=1$ to obtain v_{4} :

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
-4 \\
0 \\
1 \\
2 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{c}
-5 \\
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

We check

$$
\begin{aligned}
& A v_{1}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b, \checkmark \\
& A v_{2}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{c}
-3 \\
1 \\
0 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b, \checkmark \\
& A v_{3}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{c}
-4 \\
0 \\
1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b, \checkmark
\end{aligned}
$$

and

$$
A v_{4}=\left[\begin{array}{ccccc}
1 & 4 & 5 & 1 & 8 \\
1 & 4 & 5 & 2 & 10 \\
3 & 12 & 15 & 4 & 26
\end{array}\right]\left[\begin{array}{c}
-5 \\
0 \\
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
5 \\
11
\end{array}\right]=b . \checkmark
$$

2. (5 points) Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.

The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{n} are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3. (5 points) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.
The square matrix A is non-singular if the only column vector x with $A x=0$ is $x=0$.
4. (5 points) State the result about the linear dependence or linear independence p vectors in \mathbb{R}^{m}. Include everything that is necessary, but nothing more.

If $p>m$, then every set of p vectors in \mathbb{R}^{m} is linearly dependent. (We have called this the short-wide theorem.)
5. (5 points) Let A be a non-singular $n \times n$ matrix and let b be an element of \mathbb{R}^{n}. Prove that $A x=b$ has at least one solution. (I want a complete proof. The answer "We did this in class" is not acceptable.)
Let A_{i} denote the $i^{\text {th }}$ column of A. Consider the $n+1$ column vectors A_{1}, \ldots, A_{n}, b from \mathbb{R}^{n}. The "Short-Wide Theorem" tells us that these $n+1$ vectors in \mathbb{R}^{n} are linearly dependent. Thus there exists numbers c_{1}, \ldots, c_{n+1}, at least one of which is non-zero, such that $c_{1} A_{1}+\cdots+c_{n} A_{n}+c_{n+1} b=0$. We observe that c_{n+1} is not zero because otherwise $c_{1} A_{1}+\cdots+c_{n} A_{n}=0$ is a non-trivial linear combination of the columns of A which equals zero. This would violate the hypothesis that A is non-singular. Thus,

$$
A\left[\begin{array}{c}
\frac{-c_{1}}{c_{n+1}} \\
\vdots \\
\frac{-c_{n}}{c_{n+1}}
\end{array}\right]=b
$$

6. (5 points) Let A, B, and C be 2×2 matrices with A not equal to the zero matrix and $B A=C A$. Does B have to equal C ? If yes, prove your answer. If no, give a counterexample.
NO. Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right], B=\left[\begin{array}{ll}2 & -1 \\ 2 & -1\end{array}\right]$, and $C=\left[\begin{array}{ll}6 & -3 \\ 6 & -3\end{array}\right]$. We see that $B \neq C$ but $B A$ and $C A$ are both equal to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
7. (5 points) Let A and B be 2×2 matrices. Does $(A+B)(A-B)$ have to equal $A^{2}-B^{2}$? If yes, prove your answer. If no, give a counterexample.
N0. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. We see that $A^{2}=B^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ so $A^{2}-B^{2}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. We also see that $A+B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], A-B=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, and

$$
(A+B)(A-B)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \neq A^{2}-B^{2}
$$

8. (5 points) Let A and B be $n \times n$ matrices. How is $(A B)^{\mathrm{T}}$ related to the product of A^{T} and B^{T} ? Prove that your answer is correct.
We prove that $(A B)^{\mathrm{T}}=B^{\mathrm{T}} A^{\mathrm{T}}$. The matrices $(A B)^{\mathrm{T}}$ and $B^{\mathrm{T}} A^{\mathrm{T}}$ both are $n \times n$ matrices. We prove that the corresponding entries are equal. Let $A_{i, j}$ be the entry of A in row i and column j. The entry in row r column c of $(A B)^{\mathrm{T}}$ is

$$
\begin{gathered}
{\left[(A B)^{\mathrm{T}}\right]_{r, c}=(A B)_{c, r}=\sum_{j=1}^{n} A_{c, j} B_{j, r}=\sum_{j=1}^{n} B_{j, r} A_{c, j}} \\
\quad=\sum_{j=1}^{n}\left(B^{\mathrm{T}}\right)_{r, j}\left(A^{\mathrm{T}}\right)_{j, c}=\left[\left(B^{\mathrm{T}}\right)\left(A^{\mathrm{T}}\right)\right]_{r, c}
\end{gathered}
$$

and this is the entry in row r and column c of $\left(B^{\mathrm{T}}\right)\left(A^{\mathrm{T}}\right)$. The first equality is the definition of transpose. The second equality is the definition of matrix product. The symbols $A_{c, j}$ and $B_{j, r}$ represent numbers and numbers commute under multiplication. This explains the third equality. The fourth equlaity is the definition of transpose, again. The fifth equality is the definition of matrix multiplication, again.
9. (5 points) Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{4} with v_{1}, v_{2}, v_{3} linearly dependent. Do $v_{1}, v_{2}, v_{3}, v_{4}$ have to be linearly dependent? If yes, prove your answer. If no, give a counterexample.

YES. The first sentence guarantees that there are numbers a_{1}, a_{2}, a_{3}, at least one of which is non-zero, with $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$. Thus, we have numbers $a_{1}, a_{2}, a_{3}, 0$, at least one of which is not zero, and $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+0 v_{4}=0$. We conclude that the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent.

