PRINT Your Name: \qquad
Math 544, Exam 1, Fall 2009
Write your answers as legibly as you can.
Make your work be coherent and clear. Write in complete sentences
There are 12 problems on 6 pages. Problems 1, 2, 3, 4 are worth 9 points each. Each of the other problems is worth problem is worth 8 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators. No phones.
I will post the solutions on my website shortly after the exam is finished.

1. Find the GENERAL solution of the following system of linear equations. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
\begin{aligned}
x_{1}+x_{2}-x_{5} & =1 \\
x_{2}+2 x_{3}+x_{4}+3 x_{5} & =1 \\
x_{1}-x_{3}+x_{4}+x_{5} & =0
\end{aligned}
$$

2. Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.
3.

(a) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.
(b) Let A be an $n \times n$ matrix. List three statements that are equivalent to the statement " A is non-singular".
4. Let A and B be 2×2 matrices with A not equal to the zero matrix and $A^{2}=A B$. Does A have to equal B ? If yes, prove your answer. If no, give a counterexample.
5. Let A and B be 2×2 matrices. Does $(A+B)^{2}$ have to equal $A^{2}+2 A B+B^{2}$? If yes, prove your answer. If no, give a counterexample.
6. Recall that the matrix A is called symmetric if $A^{\mathrm{T}}=A$. Let A and B be 2×2 symmetric matrices. Does $A B$ have to be a symmetric matrix? If yes, prove your answer. If no, give a counterexample.
7. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{4} with v_{1}, v_{2}, v_{3} linearly dependent. Do $v_{1}, v_{2}, v_{3}, v_{4}$ have to be linearly dependent? If yes, prove your answer. If no, give a counterexample.
8. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{4} with v_{1}, v_{2}, v_{3} linearly independent. Do $v_{1}, v_{2}, v_{3}, v_{4}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.
9. Suppose v_{1}, v_{2} and v_{3} are vectors in \mathbb{R}^{4} with v_{1}, v_{2} linearly independent, v_{1}, v_{3} linearly independent, and v_{2}, v_{3} linearly independent. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, give a proof. If no, give an example.
10. Suppose A is a 2×3 matrix and B is a 3×2 matrix with $A B=I$. Does $B A$ have to equal I ? If yes, give a proof. If no, give an example.
11. Suppose A and B are 2×2 matrices with $A B=I$. Does $B A$ have to equal I ? If yes, give a proof. If no, give an example.
12. Suppose v_{1}, v_{2}, v_{3} are linearly independent vectors in \mathbb{R}^{4}. Do the vectors $v_{1}+v_{2}, v_{2}-v_{3}, v_{3}+v_{1}$ have to be linearly independent? If yes, give a proof. If no, give an example.

