PRINT Your Name: \qquad
Math 544, Exam 1, Fall 2009, Solution
Write your answers as legibly as you can.
Make your work be coherent and clear. Write in complete sentences
There are 12 problems on 6 pages. Problems 1, 2, 3, 4 are worth 9 points each. Each of the other problems is worth problem is worth 8 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators. No phones.

I will post the solutions on my website shortly after the exam is finished.

1. Find the GENERAL solution of the following system of linear equations. Also, list three SPECIFIC solutions, if possible. CHECK that the specific solutions satisfy the equations.

$$
\begin{aligned}
x_{1}+x_{2}-x_{5} & =1 \\
x_{2}+2 x_{3}+x_{4}+3 x_{5} & =1 \\
x_{1}-x_{3}+x_{4}+x_{5} & =0
\end{aligned}
$$

Start with the matrix

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
1 & 0 & -1 & 1 & 1 & 0
\end{array}\right] .
$$

Apply $R_{3} \mapsto R_{3}-R_{1}$ to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 0 & 0 & -1 & 1 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & -1 & -1 & 1 & 2 & -1
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}-R_{2}$ and $R_{3} \mapsto R_{3}+R_{2}$ to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 0 & -2 & -1 & -4 & 0 \\
0 & 1 & 2 & 1 & 3 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right]
$$

Apply $R_{1} \mapsto R_{1}+2 R_{3}$ and $R_{2} \mapsto R_{2}-2 R_{3}$ to obtain

$$
\left[\begin{array}{ccccc|c}
1 & 0 & 0 & 3 & 6 & 0 \\
0 & 1 & 0 & -3 & -7 & 1 \\
0 & 0 & 1 & 2 & 5 & 0
\end{array}\right] .
$$

This matrix is in reduced row echelon from. The solution set is the set of
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$
such that

$$
\begin{aligned}
& x_{1}=-3 x_{4}-6 x_{5} \\
& x_{2}=1+3 x_{4}+7 x_{5} \\
& x_{3}=-2 x_{4}-5 x_{5}
\end{aligned}
$$

such that x_{4} and x_{5} are arbitrary. A different way to say this is to say that the solution set is

$$
\left\{\left.\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
-3 \\
3 \\
-2 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-6 \\
7 \\
-5 \\
0 \\
1
\end{array}\right] \right\rvert\, x_{4}, x_{5} \in \mathbb{R}\right\}
$$

Check. Our answer is correct. When $x_{4}=x_{5}=0$ our answer is

$$
\left[\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right]
$$

and this proposed solution works because

$$
\begin{aligned}
& 1=1 \\
& 1=1 \\
& 0=0 . \checkmark
\end{aligned}
$$

When $x_{4}=1$ and $x_{5}=0$ our answer is

$$
\left[\begin{array}{c}
-3 \\
4 \\
-2 \\
1 \\
0
\end{array}\right]
$$

and this proposed solution works because

$$
\begin{aligned}
& -3+4=1 \\
& 4-4+1=1 \\
& -3+2+1=0 . \checkmark
\end{aligned}
$$

When $x_{4}=0$ and $x_{5}=1$ our answer is

$$
\left[\begin{array}{c}
-6 \\
8 \\
-5 \\
0 \\
1
\end{array}\right]
$$

and this proposed solution works because

$$
\begin{aligned}
& -6+8-1=1 \\
& 8-10+3=1 \\
& -6+5+1=0 .
\end{aligned}
$$

2. Define "linearly independent". Use complete sentences. Include everything that is necessary, but nothing more.
The vectors v_{1}, \ldots, v_{p} in \mathbb{R}^{n} are linearly independent if the only numbers c_{1}, \ldots, c_{p} with $\sum_{i=1}^{p} c_{i} v_{i}=0$ are $c_{1}=c_{2}=\cdots=c_{p}=0$.
3.

(a) Define "non-singular". Use complete sentences. Include everything that is necessary, but nothing more.

The square matrix A is non-singular if the only column vector x with $A x=0$ is $x=0$.
(b) Let A be an $n \times n$ matrix. List three statements that are equivalent to the statement " A is non-singular".

1. The columns of A are linearly independent.
2. For every vector b in \mathbb{R}^{n}, the system of equations $A x=b$ has a unique solution.
3. The matrix A is invertible.
4. Let A and B be 2×2 matrices with A not equal to the zero matrix and $A^{2}=A B$. Does A have to equal B ? If yes, prove your answer. If no, give a counterexample.
NO. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}75 & 82 \\ 0 & 0\end{array}\right]$. We see that A is not the zero matrix and A does not equal B; but, A^{2} and $A B$ are both equal to $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
5. Let A and B be 2×2 matrices. Does $(A+B)^{2}$ have to equal $A^{2}+2 A B+B^{2}$? If yes, prove your answer. If no, give a counterexample.
NO. Take $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. We see that

$$
(A+B)^{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

On the other hand,

$$
\begin{gathered}
A^{2}+2 A B+B^{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \\
=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+2\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]
\end{gathered}
$$

hence, $(A+B)^{2} \neq A^{2}+2 A B+B^{2}$.
6. Recall that the matrix A is called symmetric if $A^{\mathrm{T}}=A$. Let A and B be 2×2 symmetric matrices. Does $A B$ have to be a symmetric matrix? If yes, prove your answer. If no, give a counterexample.
NO. Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. We see that A and B are each symmetric, but the product

$$
A B=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

is not symmetric.
7. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{4} with v_{1}, v_{2}, v_{3} linearly dependent. Do $v_{1}, v_{2}, v_{3}, v_{4}$ have to be linearly dependent? If yes, prove your answer. If no, give a counterexample.

YES. The first sentence guarantees that there are numbers a_{1}, a_{2}, a_{3}, at least one of which is non-zero, with $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}=0$. Thus, we have numbers $a_{1}, a_{2}, a_{3}, 0$, at least one of which is not zero, and $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{3}+0 v_{4}=0$. We conclude that the vectors $v_{1}, v_{2}, v_{3}, v_{4}$ are linearly dependent.
8. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be vectors in \mathbb{R}^{4} with v_{1}, v_{2}, v_{3} linearly independent. Do $v_{1}, v_{2}, v_{3}, v_{4}$ have to be linearly independent? If yes, prove your answer. If no, give a counterexample.

NO. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad v_{4}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right] .
$$

We have v_{1}, v_{2}, v_{3} linearly indepndent, but $v_{1}, v_{2}, v_{3}, v_{4}$ linearly dependent (since $1 v_{1}+1 v+2+0 v_{3}-v_{4}=0$.)
9. Suppose v_{1}, v_{2} and v_{3} are vectors in \mathbb{R}^{4} with v_{1}, v_{2} linearly independent, v_{1}, v_{3} linearly independent, and v_{2}, v_{3} linearly independent. Do the vectors v_{1}, v_{2}, v_{3} have to be linearly independent? If yes, give a proof. If no, give an example.

NO. Consider the vectors:

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad v_{3}=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right]
$$

The vectors v_{1} and v_{2} are independent (since neither vector is a multiple of the other). The vectors v_{1} and v_{3} are independent (since neither vector is a multiple of the other). The vectors v_{2} and v_{3} are independent (since neither vector is a multiple of the other). Yet the vectors v_{1}, v_{2}, v_{3} are dependent because $-2 v_{1}+v_{2}+v_{3}=0$.
10. Suppose A is a 2×3 matrix and B is a 3×2 matrix with $A B=I$. Does $B A$ have to equal I ? If yes, give a proof. If no, give an example.

NO. Take

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

We see

$$
A B=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

but

$$
B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

11. Suppose A and B are 2×2 matrices with $A B=I$. Does $B A$ have to equal I ? If yes, give a proof. If no, give an example.

YES. The hypothesis $A B=I$ guarantees that B is non-singular because if x is a vector with $B x=0$, then we multiply both sides by A to learn $x=A B x=A 0=0$. The only vector that B sends to zero is $x=0$. The non-singular matrix theorem (see problem 3) guarantees that B is invertible. So there is a matrix B^{-1} with $B B^{-1}=I$ and $B^{-1} B=I$. Multiply both sides of $A B=I$ on the right with B^{-1} to get

$$
A=A B B^{-1}=I B^{-1}=B^{-1}
$$

We conclude that

$$
B A=B B^{-1}=I
$$

12. Suppose v_{1}, v_{2}, v_{3} are linearly independent vectors in \mathbb{R}^{4}. Do the vectors $v_{1}+v_{2}, v_{2}-v_{3}, v_{3}+v_{1}$ have to be linearly independent? If yes, give a proof. If no, give an example.

NO. The vectors

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

are linearly independent, but

$$
v_{1}+v_{2}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \quad v_{2}-v_{3}=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
0
\end{array}\right], \quad v_{3}+v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

are linearly dependent because

$$
1\left(v_{1}+v_{2}\right)-1\left(v_{2}-v_{3}\right)-1\left(v_{3}+v_{1}\right)=0
$$

and the coefficients $1,-1,-1$ are not all zero.

