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1. INTRODUCTORY REMARKS ABOUT THE COURSE.

Here are some preliminary remarks about the course.

(1) My name is Professor Kustin. (My last name rhymes with “Justin”.)
(2) Quiz 1 on Wednesday, January 19 is one of the assigned HW problems from

1–4.
(3) I have taught Math 544 many times from many textbooks. The book that both-

ers me the least is by Johnson-Riess-Arnold. The early editions were relatively
inexpensive and had a minimal amount of junk. The later editions have become
very expensive and have a great deal of junk. If you feel that you need a text
book be sure to get a book that emphasizes vector spaces (rather than matrix
calculations). If you find a book that discusses vector spaces, linear indepen-
dence, and basis near the beginning, it will probably be okay. In particular, the
various editions of the book by Johnson-Riess-Arnoldis are okay. It is not re-
quired that you have a book. I have posted a complete set of lecture notes and I
will post Homework problems.

(4) There will be an Exam or Quiz essentially every other class. The exams and
quizzes will be given at the end of class. When you finish your quiz or exam,
take a picture of your solution for your records and give me your answers.
I will send my comments back by way of e-mail. In general, I won’t return
papers.

(5) If you miss an exam or quiz or do poorly on an exam or quiz; don’t worry about
it. There will be plenty more chances for you to demonstrate competence. Be
sure to learn how to do missed or wrong problem correctly. I’ll surely ask about
it again.

(6) I plan to post typed versions of the class lectures on my website. If you miss
a class, the typed version of my lectures will be of some use to you. (They
might also be of use if you attend class. Sometimes what I convey in class is
not as articulate as what I type sitting at my desk.) I encourage you to form
partnerships with your classmates and share notes that are taken from class.
(Surely, there will be times that I think some something helpful to add as I am
lecturing. In particular, my answers to student’s questions will not make their
way into the typed notes.) I do not mind if you take pictures of my lectures on
the whiteboard.

(7) To make the class work, please do the following.
(a) Master every lecture.
(b) Do every homework problem.
(c) Ask questions. There are many ways to ask questions: raise your hand in

class, send me an e-mail, leave me a note (either in my office or at the front
of the classroom), etc. Do whatever works for you.



MATH 544, SPRING 2022 3

(d) Learn from your mistakes.
(e) Don’t give up.

(8) The course is a mix of calculation and theory. You are supposed to have had
Math 300, which is the course about “How to prove mathematical statements”.
Traditionally, Math 544 and Math 574 are the first 500 level Math courses that
students take. These two courses are a mix of theory and calculation; whereas,
Math 546 and 554 are straight theory.
(a) I believe that theory and calculation reinforce one another. As one makes

calculations, one learns how and why things work. As one learns theory,
one learns how to streamline calculations.

(b) Learn every definition. Learn the official definition (because that is what
one uses to prove things). Also learn the intuitive idea behind each concept
(because we are human beings and not robots).

(c) Be sure to look at the old exams. Notice the high percentage of the problems
that are: “Prove”, “True or False”, “Define”. I am especially fond of True
or False questions. I believe that these are the questions that confront us
most in life. Our co-worker says “blah blah blah” to us; we are left trying to
figure out if this makes any sense. Fortunately, for elementary mathematical
assertions one can usually produce a counterexample or a proof.

(9) There is a linear algebra course that does not have any theory and does not have
any proofs and has a prerequisite of Math 142 (rather than Math 300). That
course is called Math 344, “Applied Linear Algebra”.

Linear algebra is the study of vector spaces. A vector space is a set of things that
can be added and multiplied by scalars. Of course “addition” and “scalar multipli-
cation” must satisfy certain rules. Eventually, I will tell you the official rules. For
the time being, lets just say “the usual rules”. For our present purposes, the most
important rules are the closure rules. When you add two elements of a vector space,
you get another element of the vector space. When you multiply an element of the
vector space by a real number scalar, you get an element of the vector space.

Examples. (1) The set of directed line segments in the xy-plane forms a vector
space. (In this situation two “vectors” are considered the same of they have
the same length and direction. One can move a vector as long as one does not
change its length or direction.) Such vectors can be added and multiplied by
scalars. These vectors are studied in Math 241.

(2) The set of column vectors with 2 entries{[
a
b

]∣∣∣∣a and b are real numbers
}

forms a vector space that we call R2. One adds two vectors component-wise
and one multiplies a vector by a scalar component-wise.
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(3) The set of column vectors with n entries


a1
a2
...

an


∣∣∣∣∣∣∣∣a1, . . . ,an ∈ R


forms a vector space that we call Rn. Again addition and multiplication take
place component-wise.

(4) Consider a system of m homogeneous linear equations in n unknowns:

(1.0.1)


c11x1 + · · ·+ c1nxn = 0

...
cm1x1 + · · ·+ cmnxn = 0.

(In this system of equations the ci j are real numbers. They are called the co-
efficients of the equations. The x j are the unknowns. The equations are ho-
mogeneous and linear because every (non-zero) term that appears has degree
EXACTLY one in the unknowns.) The set of solutions of this set of equations
is a vector space. Indeed, ifa1

...
an

 and

b1
...

bn


each are a solution of (1.0.1).1 Thena1 +b1

...
an +bn



1This means that 
c11a1 + · · ·+ c1nan = 0

...
cm1a1 + · · ·+ cmnan = 0.

and 
c11b1 + · · ·+ c1nbn = 0

...
cm1b1 + · · ·+ cmnbn = 0.
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is a solution of (1.0.1)2 and λa1
...

λan


is a solution of (1.0.1).3 for each real number λ.

(5) The set of differentiable functions f : R→ R forms a vector space. (This is the
object studied in Math 141.)

(6) The set of solutions of a homogeneous linear differential equation, like

y′+ y = 0,

forms a vector space. (This vector space is studied in Math 242 and the tech-
niques you used to solve homogeneous linear differential equation are vector
space techniques.)

(7) Fix D(x) a polynomial with real coefficients. Consider the set of rational func-
tions of the form

c0 + · · ·+ cnxn

D(x)
where n is arbitrary and c0, . . . ,cn are arbitrary real numbers. This set forms a
vector space. In math 142 you learned how to integrate every element in the
set using the technique of Partial Fractions. The game of partial fractions is a
vector space game.

2Plug a1 +b1
...

an +bn


into the top equation of (1.0.1), get

c11(a1 +b1)+ · · ·+ c1n(an +bn).

Distribute and regroup to get(
c11(a1)+ · · ·+ c1n(an)

)
+
(

c11(b1)+ · · ·+ c1n(bn)
)
= 0+0 = 0.

The same game works for each equation in (1.0.1), not just the top equation.
3Again, one plugs λa1

...
λan


into the left side of each equation of (1.0.1) and then factors out the λ to see thatλa1

...
λan


actually works in each equation of (1.0.1).
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2. SYSTEMS OF LINEAR EQUATIONS.

Warm up. Here are three easy examples of systems of equations. It is easy to solve
each of these systems and we get three different types of answers.

Example One. The system of linear equations

x+ y = 1
x− y = 1

has exactly one solution; namely the point (1,0). (Actually, we write the solution

as the vector
[

1
0

]
.) The corresponding picture is two lines in the xy plane that meet

at a point. (See the page of pictures that follows the three examples.)

Example Two. The system of linear equations

x+ y = 1
2x+2y = 2

has an infinite number of solutions; namely, every point on the line x+y = 1 is also
on 2x+2y = 2. The corresponding picture is one line in the xy-plane. (See the page
of pictures that follows the three examples.)
Typically we will attack Example Two by saying that the solution set of Example
Two is the same as the solution set of

(2.0.1) x+ y = 1.

The solution set of (2.0.1) is the same as the solution set of

(2.0.2)
{

x = 1− y
y = y.

The solution set of (2.0.2) is[
x
y

]
=

[
1
0

]
+ y
[
−1
1

]
, where y is free to take any value.

Example Two and a half. Solve

(2.0.3)
{

x1 +2x2 + +4x4 = 6
x3 +5x4 = 7.

Typically, we would say: the solution set of (2.0.3) is the same as the solution set of

(2.0.4)


x1 = 6−2x2−4x4
x2 = x2
x3 = 7 −5x4
x4 = x4



MATH 544, SPRING 2022 7

The solution set of (2.0.4) is
x1
x2
x3
x4

=


6
0
7
0

+ x2


−2
1
0
0

+ x4


−4
0
−5
1

 , where x2 and x4 are free to take any value.

Example Three. The system of equations

x+ y = 1
x+ y = 2

has no solution. The corresponding picture is two parallel lines in the xy-plane.
(See the next page.)
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To solve a system of linear equations we replace the given system of equations
by an “easier” system of equations with the same solution step. We continue this
process until we have a system of equations that is is “easy” as possible. Then we
read off the answer.

The technique that I am about to show is called Gaussian elimination or Gauss-
Jordan elimination. (It is how we solve systems of linear equations.)

It turns out that if we apply the procedure to

(2.0.5)

 x1 + 3x2 + 7x3 = 28
2x1 + 7x2 +16x3 = 64
3x1 +11x2 +26x3 = 103,

then we end up with

(2.0.6)

 x1 +0x2 +0x3 = 1
0x1 + x2 +0x3 = 2
0x1 +0x2 + x3 = 3.

We read that the original system of equations has exactly one solution and that
solution is x1

x2
x3

=

1
2
3

 .
Projects 2.1. We have three projects.

(a) What operations can we perform on a system of equations that yield a system
of equations with the same solution set?

(b) When do we stop?
(c) How do we read off the answer?

Operations on systems of linear equations which do not change the solution set.
For the time being, lets call these the “elementary equation operations”. (Usually,
we will deal with this problem using matrices instead of equations. Our usual name
for these operations is “elementary row operations”.)

(1) We may exchange two equations.
(2) We may multiply an equation by a non-zero constant.
(3) We may add a multiple of one equation to another equation.

Please notice that these operations yield a system of linear equations with
the exact same solution set as the original system of equations. Each of these
elementary operations can be undone using another elementary operation.

We now apply elementary equation operations to (2.0.5) in order to obtain (2.0.6).
I like the 1x1 in the first equation. Let us use this 1x1 to get rid of the 2x1 in

the second equation and the 3x1 in the third equation. In other words, we replace



10 MATH 544, SPRING 2022

Equation 2 by Equation 2 −2 times Equation 1, and we replace Equation 3 with
Equation 3 −3 times Equation 1. We obtain

x1 +3x2 +7x3 = 28
x2 +2x3 = 8

2x2 +5x3 = 19.

I like the 1x2 in the second equation. Let us use this 1x2 to get rid of the 3x2 in
the first equation and the 2x2 in the third equation. Replace Equation 1 by Equation
1 −3 times Equation 2. Replace Equation 3 by Equation 3 −2 times Equation 2.
We obtain

x1 + x3 = 4
x2 +2x3 = 8

x3 = 3.
I like the 1x3 in the third equation. We use this 1x3 to get rid of x3 in the first

equation and 2x3 in the second equation. Replace Equation 1 by Equation 1 minus
Equation 3. Replace Equation 2 by Equation 2 −2 Equation 3. We obtain

x1 = 1
x2 = 2

x3 = 3.

This is the system of equations (2.0.6). The unique solution of the system of equa-
tions (2.0.5) is

(2.1.1)

x1
x2
x3

=

1
2
3

 .
Check Of course, (2.1.1) is the solution of (2.0.5) because

1+ 3(2)+ 7(3) = 28
2+ 7(2)+16(3) = 64
3+11(2)+26(3) = 103.

There is no particular reason to write the x’s and the equal signs.
We write the system of equations (2.0.5) as an augmented matrix:

(2.1.2)

 1 3 7 28
2 7 16 64
3 11 26 103


and then apply Elementary Row Operations (EROs).

(1) We may exchange two rows.
(2) We may multiply a row by a non-zero constant.
(3) We may add a multiple of one row to another row.

Please notice that if one applies any of these elementary row operations then
the solution set of the system of equations that corresponds to the original ma-
trix is exactly the same as the solution set that corresponds to the new system of
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equations. Each of these elementary row operations can be undone by another
elementary row operation.

If we apply EROs to (2.1.2) we obtain:
R2 7→ R2−2R1
R3 7→ R3−3R1

 1 3 7 28
0 1 2 8
0 2 5 19

 .
R1 7→ R1−3R2
R3 7→ R3−2R2  1 0 1 4

0 1 2 8
0 0 1 3

 .
R1 7→ R1−R3
R2 7→ R2−2R3.  1 0 0 1

0 1 0 2
0 0 1 3


We reinterpret the most recent matrix to say the system of equations (2) has a unique
solution namely x1

x2
x3

=

1
2
3

 .

Project 2.1.(b). On page 9 we identified three projects. We have carried out Project
2.1.(a). Now we do Project 2.1.(b).

We must answer the following question. Suppose you want to solve a system of
equations. You have written the system of equations as an augmented matrix. You
are applying Elementary Row Operations. When do you stop?

The answer: Stop when the matrix is in “row echelon form” or “reduced row
echelon form”.

Roughly speaking, a matrix is in row echelon form when it is as much like an
upper triangular matrix with one’s on the main diagonal as possible. A matrix is in
reduced row echelon form when the matrix is as much like the identity matrix as
possible.

Here are some examples. The matrices in the left column are in row echelon
form. The matrices in the right column are in reduced row echelon form. The
symbol ∗ can be any number.
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row echelon form reduced row echelon form1 ∗ ∗ ∗ ∗
0 1 ∗ ∗ ∗
0 0 1 ∗ ∗

 1 0 0 ∗ ∗
0 1 0 ∗ ∗
0 0 1 ∗ ∗


1 ∗ ∗ ∗ ∗

0 0 1 ∗ ∗
0 0 0 0 0

 1 ∗ 0 ∗ ∗
0 0 1 ∗ ∗
0 0 0 0 0


1 ∗ ∗ ∗ ∗

0 0 0 1 ∗
0 0 0 0 1

 1 ∗ ∗ 0 0
0 0 0 1 0
0 0 0 0 1


We give a complete description of Row Echelon Form and Reduced Row Echelon

Form.

Definition. A matrix is in Row Echelon Form (REF) if

(i) the left-most non-zero entry in each row is a one,
(ii) the leading one in a row k appears to the right of the leading one in row k−1,

and
(iii) the rows which consist of all zeros are at the bottom.

A matrix is in Reduced Row Echelon Form (RREF) if the matrix is in Row Echelon
Form and every entry above every leading one is also zero.

Remark. The word echelon conveys the notion of a hierarchy. Here is what the
Merriam-Webster dictionary says:

(1) an arrangement of a body of troops with its units each somewhat to the left or
right of the one in the rear like a series of steps;

(2) a formation of units or individuals resembling such an echelon geese flying in
echelon;

(3) a flight formation in which each airplane flies at a certain elevation above or
below and at a certain distance behind and to the right or left of the airplane
ahead.

The dictionary also reminded me of the phrase “the upper echelons of manage-
ment”.

Remark. If you are actually solving a system of equations, we probably want to
put the matrix in Reduced Row Echelon Form. If you only want to know how many
solutions a system of equations has, you can stop with the matrix in Row Echelon
Form (or maybe even a little less.)

Project 2.1.(c). On page 9 we identified three projects. We have carried out Projects
2.1.(a) and 2.1.(b). Now we do Project 2.1.(c).



MATH 544, SPRING 2022 13

The question is the following. Suppose that a matrix is in Reduced Row Echelon
Form. What is the solution set of the corresponding system of equations? We will
answer the question by exhibiting four examples.

Example One. The system of equations that corresponds to 1 0 0 1
0 1 0 2
0 0 1 3


has exactly one solution and that solution isx1

x2
x3

=

1
2
3

 .
Example Two. The system of equations that corresponds to 1 0 0 1 4

0 1 0 2 5
0 0 1 3 6


is

(2.1.3)
x1 + x4 = 4
x2 +2x4 = 5
x3 +3x4 = 6

We rewrite these equations as

x1 = 4− x4
x2 = 5−2x4
x3 = 6−3x4
x4 = x4.

The solution set of (2.1.3) is the set


x1
x2
x3
x4


∣∣∣∣∣∣∣∣


x1
x2
x3
x4

=


4
5
6
0

+ x4


−1
−2
−3
1

 where x4 can be any real number.

 .

This is a line in four-space.

Example Three. The system of equations that corresponds to 1 2 0 3 5
0 0 1 4 6
0 0 0 0 0


is

(2.1.4) x1 +2x2 +3x4 = 5
x3 +4x4 = 6
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We rewrite these equations as

x1 = 5−2x2−3x4
x2 = x2
x3 = 6 −4x4
x4 = x4.

The solution set of (2.1.4) is the set


x1
x2
x3
x4


∣∣∣∣∣∣∣∣


x1
x2
x3
x4

=


5
0
6
0

+ x2


−2
1
0
0

+ x4


−3
0
−4
1

 , where x2 and x4 can be
any real numbers.

 .

This is a plane in four space.

Example Four. The system of equations that corresponds to 1 2 3 0 5
0 0 0 1 6
0 0 0 0 1


is

x1 +2x2 +3x3 = 5
x4 = 6
0 = 1.

This system of equations has no solution because 0 is not equal to 1.
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3. MATRICES.

Definition 3.1. A matrix is a rectangular array of numbers. Two matrices are equal
if they have the same shape and the corresponding entries are equal. In particular
if A is a matrix with r rows, c columns, and ai j in row i and column j and B is a
matrix with p rows, q columns, and bi j in row i and column j, then the matrices A
and B are equal if r = p, c = q, and ai j = bi j for all i and j.

One multiplies a matrix by a scalar component-wise. If two matrices have the
same shape (that is they have the same number of rows and the same number of
columns), then one adds these matrices component-wise:

2
[

1 2 3
4 5 6

]
=

[
2 4 6
8 10 12

]
and [

1 2 3
4 5 6

]
+

[
11 12 13
14 15 16

]
=

[
12 14 16
18 20 22

]
.

“Matrix multiplication consists of many dot products.” That is, if A = (ai j) is4

an m× n matrix5 and B = (bi j) is a p× q matrix, then AB makes sense if n = p;
furthermore, if n= p, then AB is an m×q matrix6 and the entry in row r and column
c of AB is

(3.1.1) ar1b1c +ar2b2c + · · ·+arnbnc.

[
1 2 3

]4
5
6

= 1 ·4+2 ·5+3 ·6 = 4+10+18 = 32.

[
1 2 3
4 5 6

]7
8
9

=

[
1 ·7+2 ·8+3 ·9
4 ·7+5 ·8+6 ·9

]
=

[
50
122

]
Problem 3.2. Express  x1 + 3x2 + 7x3 = 28

2x1 + 7x2 +16x3 = 64
3x1 +11x2 +26x3 = 103,

in the form Ax = b where A and b are matrices of constants and x is a matrix of
unknowns.

4The notation A = (ai j) is a matrix is intended to indicate that the entry of A in row i and column
j is called ai j.

5The phrase A is m×n matrix is intended to indicate that A has m rows and n columns.
6An m×n matrix times an n×q matrix is equal to an m×q matrix. It is as though the middle n

annihilate one another.
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Answer.

A =

1 3 7
2 7 16
3 11 26

 , x =

x1
x2
x3

 , b =

 28
64

103

 .
Notice that some rules that hold for the multiplication of numbers also hold for

the multiplication of matrices; for example:

• matrix multiplication distributes over addition; that is

A(B+C) = AB+AC,

and
• Matrix multiplication associates; that is,

A(BC) = (AB)C.

HOWEVER, matrix multiplication is not commutative:[
1 2

][2 2
1 2

]
=
[
4 6

]
, but

[
2 2
1 2

][
1 2

]
does not make sense.

Furthermore, even if both products are legal, they might not be equal:[
1 2
3 4

][
2 2
1 2

]
=

[
4 6
10 14

]
, but

[
2 2
1 2

][
1 2
3 4

]
=

[
8 12
7 10

]
.

Also, it is possible for a matrix product AB to be zero with A 6= 0 and B 6= 0. For
example, [

1 2
2 4

][
−2 −8
1 4

]
=

[
0 0
0 0

]
.

Definition 3.3. If A = (ai j) is an m×n matrix then the transpose of A, denoted AT

is the n×m matrix with a ji in row i and column j.

Example 3.4. [
1 2 3

]T
=

1
2
3


[

1 2 3
4 5 6

]T

=

1 4
2 5
3 6


Observation 3.5. If A and B are matrices and AB makes sense, then BTAT makes
sense and (AB)T = BTAT

Example 3.6.[1 2 3
]4 7

5 8
6 9

T

=
[
4+10+18 7+16+27

]T
=
[
32 48

]T
=

[
32
50

]
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5 8
6 9

T [
1 2 3

]T
=

[
4 5 6
7 8 9

]1
2
3

=

[
4+10+18
7+16+27

]
=

[
32
50

]
.

We got the same answer both times, as expected.

Proof. Suppose A is an m×n matrix. The product AB makes sense; so B is an n×q
matrix for some q. Observe that AB is an m× q matrix; (AB)T is a q×m matrix;
and BTAT is the (attempted) product of a q×n matrix times an n×m matrix. This
product makes sense and is equal to a q×m matrix. Thus, both products make sense
and both products are equal to a q×m matrix.

Now we show that the entry of (AB)T in row r and column c is equal to the entry
of BTAT in row r and column c.

Let

(3.6.1)

{
ai j be the entry of A in row i and column j and let
bi j be the entry of B in row i and column j.

Observe that

[(AB)T]rc = (AB)cr, by Definition 3.3,

=
n

∑
i=1

acibir, by (3.1.1).

On the other hand,

[BTAT]rc =
n

∑
i=1

(BT)ri(AT)ic, by (3.1.1),

=
n

∑
i=1

(B)ir(A)ci, by Definition 3.3,

=
n

∑
i=1

biraci, by (3.6.1),

=
n

∑
i=1

acibir, because multiplication of numbers commutes.

Thus [(AB)T]rc = [BTAT]rc for all r and c with 1≤ r ≤ m and 1≤ c≤ q, and

(AB)T = BTAT.

�

Definition 3.7. A matrix A is called symmetric if AT = A.

Example 3.8. The matrix 
1 2 3 4
2 5 6 7
3 6 8 9
4 7 9 10


is a symmetric matrix.
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We are particularly interested in matrices which consist of exactly one column.
We call such matrices vectors or column vectors.

3.9. We call the set of column vectors with m entries Rm.

If x is a column vector, then
√

xTx is called the length of x.

For example, the vector
[

1
2

]
has length equal to

√
5.
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4. LINEARLY INDEPENDENT VECTORS AND NONSINGULAR MATRICES.

Recall from 3.9 that Rm is the set of column vectors with m entries.
There are three parts to this section:

A. Linearly independent vectors;
B. Nonsingular matrices; and
C. The connection between linearly independent vectors and nonsingular matrices.

The concepts “linearly independent vectors” and “nonsingular matrices” are the
first theoretical concepts that we meet in this course. However, to answer the ques-
tions “Are these vectors linearly independent?” or “Is this matrix nonsingular?”,
one must determine the number of solutions for a particular system of linear equa-
tions.

4.A. Linearly independent vectors.

Definition 4.1. The vectors v1, . . . ,vp in Rm are linearly independent if the only
numbers c1, . . . ,cp with ∑

p
i=1 civi = 0 are c1 = c2 = · · ·= cp = 0. 7

Question 4.2. Is v1 =

[
1
2

]
linearly independent?

Answer. Yes. If c1 is a number and c1v1 = 0, then

c1

[
1
2

]
=

[
0
0

]
;

hence c1 times 1 equals 0 and c1 times 2 equals 0. At any rate, if c1v1 = 0, then c1

has to be the real number zero. The vector v1 is linearly independent.

Question 4.3. Are the vectors v1 =

[
1
2

]
and v2 =

[
2
4

]
linearly independent?

Answer. No. There is a non-trivial linear combination8 of v1 and v2 which is equal
to zero; namely, 2v1− v2 = 0. I presume that this non-trivial linear combination
leapt into your eyes. If so, that is great. If not, you say, “Hmm. I don’t know. I’ll
have to make a calculation.” Then you calculate all numbers c1 and c2 with

c1v1 + c2v2 =

[
0
0

]
You solve the equations

1c1 +2c2 = 0
2c1 +4c2 = 0

7Please notice that 0 in the equation ∑
p
i=1 civi = 0 is the zero vector in Rm. This is a column with

m entries and each of the entries is zero. On the other hand, the 0 in the expression
c1 = c2 = · · ·= cp = 0 is the real number zero.

8If v1, . . . ,vp are vectors, then every vector of the form c1v1 + · · ·+ cpvp, where c1, . . . ,cp are
numbers, is called a linear combination of v1, . . . ,vp.
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Probably, you convert the problem into an augmented matrix[
1 2 0
2 4 0

]
.

You apply Elementary Row Operations to put this matrix into Reduced Row Eche-
lon Form (RREF). Then you read the answer. Apply

R2 7→ R2−2R1

to obtain [
1 2 0
0 0 0

]
.

This matrix is in (RREF). We read the solution c1 =−2c2 and c2 is free to take any
value. In particular, if c2 =−1, then c1 = 2 and 2v1−2v2 = 0 is a non-trivial linear
combination of v1 and v2 that is equal to the zero vector.

Question 4.4. Are the vectors v1 =

1
0
1

 and v2 =

0
1
4

 linearly independent?

Answer. Yes. When we solve

c1

1
0
1

+ c2

0
1
4

=

0
0
0

 ,
the top row tells us that c1 must be zero and the second row tells us that c2 must be
zero.

Question 4.5. Are the vectors v1 =

1
0
1

 and v2 =

0
1
4

 v3 =

1
0
1

 linearly indepen-

dent?

Answer. No. We see that 1v1 +0v2− v3 = 0 is a non-trivial linear combination on
v1,v2,v3 which is equal to zero.

Question 4.6. Are the vectors v1 =

1
0
0

 and v2 =

0
1
0

 v3 =

0
0
1

 linearly indepen-

dent?

Answer. Yes. When we solve

c1

1
0
0

+ c2

0
1
0

+ c3

0
0
1

=

0
0
0

 ,
the top row tells us that c1 must be zero; the second row tells us that c2 must be
zero: and the third row tells us that c3 must be zero.
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Question 4.7. Let a,b,c,d,e, f be numbers. Are the vectors v1 =

[
a
b

]
and v2 =

[
c
d

]
v3 =

[
e
f

]
linearly independent?

Answer. No. The system of equations c1v2 + c2v2 + c3v3 = 0 has at least one solu-
tion (namely c1 = c2 = c3 = 0). We must determine if it has more than one solution.
We solve the system of equations by applying Elementary Row Operations to the
augmented matrix [

a c e 0
b d f 0

]
Eventually, there will leading ones in some rows. There are two rows; so there will
be at most two leading ones. There are three columns before the augmentation; so
at least one of the columns before the augmentation will not have a leading one.
This column corresponds to a variable that is free to take any value. Hence, the
system of equations has more than one solution!

Theorem 4.8. If m< p, then any collection of p vectors in Rm is linearly dependent.

Proof. Let v1, . . .vp be p vectors in Rm. We find all numbers c1, . . . ,cp in R with

(4.8.1)
p

∑
i=1

civi = 0.

The system of equations (4.8.1) clearly has at least one solution; namely,

c1 = c2 = · · ·= cp = 0.

We will show that (4.8.1) has more than one solution. We use Gaussian elimination
to solve this system of equations. The original augmented matrix has m rows and
p columns before the augmentation. The column after the augmentation consists
entirely of zero all through the process. When the matrix is in reduced row echelon
form, some of the rows have leading ones. Thus,

the number of leading ones≤ the number of rows <

{
the number of columns
before the augmentation.

Some column before the augmentation does not have a leading one. This column
corresponds to a variable that is free to take any value. We conclude that (4.8.1) has
more than one solution; hence the vectors v1, . . . ,vp are linearly dependent. �

Problem 4.9. Suppose v1, v2, and v3 are three vectors in Rm, for some m, with v1,v2

linearly independent, v1,v3 linearly independent, and v2,v3 linearly independent.
Do the vectors v1,v2,v3 have to be linearly independent? If the answer is yes, prove
it. If the answer is no, give a counterexample.

Answer. Of course not. Take

v1 =

[
1
0

]
, v2 =

[
0
1

]
, v3 =

[
1
1

]
in R2.
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It is easy to see that the vectors v1,v2 are linearly independent; the vectors v1,v3 are
linearly independent; and the vectors v2,v3 are linearly independent. However, the
vectors v1,v2,v3 are linearly dependent by Theorem 4.8 or Question 4.7.

Problem 4.10. Suppose v1, v2, v3, and v4 are linearly independent vectors in Rm,
for some m. Do the vectors v1,v2,v3 have to be linearly independent? If the answer
is yes, prove it. If the answer is no, give a counterexample.

Answer. Yes, of course the vectors v1,v2,v3 are linearly independent. Suppose c1,
c2, c3 are numbers with

c1v1 + c2v2 + c3v3 = 0.

Then c1, c2, c3 and c4 = 0 are numbers with

c1v1 + c2v2 + c3v3 + c4v4 = 0.

The vectors v1,v2,v3,v4 are linearly independent; hence

c1 = c2 = c3 = c4 = 0.

In particular, c1 = c2 = c3 = 0 and v1,v2,v3 are linearly independent.

Problem 4.11. Suppose v1, v2, and v3 are linearly independent vectors in R3. Create
the vectors

v∗1 =
[

v1
1

]
, v∗2 =

[
v2
1

]
, v∗3 =

[
v3
1

]
in R4. Do the vectors v∗1, v∗2, v∗3 have to be linearly independent? If the answer is
yes, prove it. If the answer is no, give a counterexample.

Answer. Yes, v∗1, v∗2, v∗3 are linearly independent. Let c1,c2,c3 be numbers with

c1v∗1 + c2v∗2 + c3v∗3 = 0.

Look at the top three rows to see that

(4.11.1) c1v1 + c2v2 + c3v3 = 0

and look at the bottom row to see that c1 + c2 + c3 = 0. At any rate, the vectors
v1,v2,v3 are linearly independent by hypothesis; hence, equation (4.11.1) yields
that c1 = c2 = c3 = 0.

Remark 4.12. Almost always, if you want to show that vectors v1, . . . ,vp are lin-
early independent, we start by saying “Suppose c1, . . . ,cp are numbers with

c1v1 + · · ·+ cpvp = 0.”
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4.B. Nonsingular matrices.

Definition 4.13. The n×n matrix A is nonsingular if the only vector x with Ax = 0
is the zero vector.

Problems 4.14. (a) Is A =

[
1 2
2 4

]
non-singular?

(b) Is B =

1 0 1
0 1 0
1 4 1

 non-singular?

(c) Is C =

1 0 0
0 1 0
0 0 1

 non-singular?

Answers. (a) No, A
[

2
−1

]
= 0 and

[
2
−1

]
is not the zero vector.

(b) No, B

 1
0
−1

= 0 and

 1
0
−1

 is not the zero vector.

(c) Yes. Observe that Cx = x for all x. If Cx = 0, then x = 0.

4.C. The Nonsingular matrix theorem, version 1. I planned

• Problem 4.14.(a) to be essentially the same as Example 4.3;
• Problem 4.14.(b) to be essentially the same as Example 4.5; and
• Problem 4.14.(c) to be essentially the same as Example 4.6.

Indeed, if A is an m×n matrix, A∗,i is the ith column of A, and c1, . . . ,cn are numbers,
then

A

c1
...

cn

= c1A∗,1 + . . .cnA∗,n.

In the next result, we record the promised connection between “linearly indepen-
dent” and “nonsingular”. We also have a statement about solving systems of linear
equations of the form

Ax = b,

where A is a nonsingular matrix.

Theorem 4.15. [The Nonsingular matrix theorem, version 1] Let A be an n×n
matrix. The following conditions are equivalent.9

(a) The matrix A is nonsingular.
(b) The columns of A are linearly independent.
(c) The system of equations Ax = b has a unique solution for all b ∈ Rn.

9This means that if one of the conditions holds, then all of the conditions hold. If one of the
conditions fails, then all of the conditions fail.
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Proof. Let A∗,i be the ith column of A.

(a)⇒ (b) We assume that A is a nonsingular matrix. We want to show that the
vectors A∗,1, . . . ,A∗,n are linearly independent. We remember Remark 4.12 and we
say, “Suppose c1, . . . ,cn are numbers with c1A∗,1 + · · ·+ cnA∗,n = 0.” Then

A

c1
...

cn

= 0.

The matrix A is non-singular, hence c1
...

cn


is the zero vector and c1 = · · ·= cn = 0. We conclude that the vectors A∗,1, . . . ,A∗,n
are linearly independent.

(b)⇒ (a) We assume that the vectors A∗,1, . . . ,A∗,n are linearly independent. We
want to prove that the matrix A is non-singular. Supposec1

...
cn


is a vector in Rn with

A

c1
...

cn

= 0.

It follows that
c1A∗,1 + · · ·+ cnA∗,n = 0.

But the vectors A∗,1, . . . ,A∗,n are linearly independent by hypothesis; hence

c1 = · · ·= cn = 0.

Thus c1
...

cn


must be the zero vector and A is non-singular.

(c)⇒ (a) We are told that Ax = b has a unique solution for all b ∈ Rn. Well, 0 is a
vector in Rn. So Ax = 0 has a unique solution. On the other hand A0 = 0. Thus,
0 must be the unique solution of Ax = 0. We conclude that if Ax = 0, then x = 0.
Thus, A is a nonsingular matrix.

(a)⇒ (c) Assume A is a nonsingular matrix n× n matrix. Let b be an arbitrary
element of Rn. We must prove that there exists a unique matrix v ∈Rn with Av = b.
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(Notice that we have two jobs. We must prove that v exists and we must prove that
v is unique.)

Uniqueness. Suppose v1 and v2 both are vectors in Rn with Av1 = b and Av2 = b.
Then

A(v1− v2) = Av1−Av2, because matrix multiplication distributes over addition

= b−b

= 0

But the matrix A is nonsingular; hence v1− v2 must be the zero vector and v1 = v2.

Existence. Consider the n+1 vectors

(4.15.1) A∗,1, . . . , A∗,n, b

in Rn, where A∗,i represents column i of A. Apply Theorem 4.8 to see that the
vectors of (4.15.1) are linearly dependent. Thus, there are numbers c1, . . . ,cn+1,

(4.15.2) with some ci not zero,

and

(4.15.3) c1A∗,1 + · · ·+ cnA∗,n + cn+1b = 0.

We claim that cn+1 is not zero. (We will do a quick argument by contradiction to
establish this claim.) Indeed, if cn+1 = 0, then

(4.15.4) c1A∗,1 + · · ·+ cnA∗,n = 0

from (4.15.3). The matrix A is nonsingular and we already proved that (a)⇒ (b);
so, the columns of A are linearly independent. It follows from (4.15.4) that

c1 = · · ·= cn = 0.

On the other hand, some ci is not zero by our choice of ci in (4.15.2). This is a
contradiction. Thus, cn+1 is not zero.

Now that we have proven that cn+1 is not zero, we rewrite (4.15.3) as
−c1
cn+1

A∗,1 + · · ·+ −cn
cn+1

A∗,n = b.

Thus

A


−c1
cn+1

...
−cn
cn+1

= b

and we have proven that there does exist a vector v with Av = b. �
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5. MATRIX INVERSES.

Definition 5.1. The identity matrix I is a square matrix with 1’s on the main diag-
onal10 and zeros elsewhere.

Fact 5.2. Notice that if I is an identity matrix and M is a matrix, then IM = M and
MI = M, whenever the products are defined.

Examples 5.3.
(a) The 2×2 identity matrix is

I =
[

1 0
0 1

]
.

(b) The 3×3 identity matrix is

I =

1 0 0
0 1 0
0 0 1

 .
(c) [

1 0
0 1

][
1 2 3
4 5 6

]
=

[
1 2 3
4 5 6

]
,

[
1 2 3
4 5 6

]1 0 0
0 1 0
0 0 1

=

[
1 2 3
4 5 6

]
,

5 6
7 8
9 10

[1 0
0 1

]
=

5 6
7 8
9 10

 ,
1 0 0

0 1 0
0 0 1

5 6
7 8
9 10

=

5 6
7 8
9 10

 .
Definition 5.4. If A is an n×n matrix, then the n×n matrix B is called an inverse
of A if

AB = I and BA = I.

One usually writes A−1 to denote an inverse of A.

Example 5.5. If A =

[
1 2
3 4

]
, then B = −1

2

[
4 −2
−3 1

]
is an inverse of A because

AB =

[
1 2
3 4

][
−2 1

3
2

−1
2

]
=

[
1 0
0 1

]
and

BA =

[
−2 1

3
2

−1
2

][
1 2
3 4

]
=

[
1 0
0 1

]
.

Example 5.6. The matrix A =

[
1 2
2 4

]
has no inverse because if

[
a b
c d

]
is the in-

verse of A, then [
1 2
2 4

][
a b
c d

]
=

[
1 0
0 1

]
10The main diagonal is the diagonal from the upper left corner to the lower right corner.
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In particular,

1a+2c = 1

2a+4c = 0

and this system of equations has no solution.

Definition 5.7. The n×n matrix A is called invertible if A has an inverse.

Possibly Examples 5.5 and 5.6 give you the idea that there is a connection be-
tween the concepts “nonsingular” and “invertible”.

Theorem 5.8. [The Nonsingular matrix theorem, version 2] Let A be an n× n
matrix. The following conditions are equivalent.

(a) The matrix A is nonsingular.
(b) The columns of A are linearly independent.
(c) The system of equations Ax = b has a unique solution for all b ∈ Rn.
(d) The matrix A is invertible.

Proof. We already saw that conditions (a), (b), and (c) are equivalent. Now we
show that these three conditions are equivalent to (d).

(d)⇒ (a) Assume that A is invertible. We want to prove A is nonsingular. Suppose
v is a vector ad Av = 0. Multiply both sides of the equation on the left by A−1 to
obtain

A−1Av = A−10; hence

Iv = 0; hence

v = 0.

We conclude that if Av = 0, then v = 0. In other words, we conclude that A is
nonsingular.

(a)⇒ (d) Assume A is a nonsingular n×n matrix. We prove that A is an invertible
matrix.

We saw in Theorem 4.15 that if A is a nonsingular n×n matrix then the system
of equations Ax = b has a unique solution, for every b in Rn. Thus, for each i
with 1 ≤ i ≤ n, there is a (unique) vector vi with Avi equal to the ith column of the
identity matrix. Let B be the matrix whose columns are v1,v2, . . . ,vn (in that order).
We have chosen B to have the property that

(5.8.1) AB = I.

We still must show that BA = I. Multiply both sides of equation (5.8.1) on the
right by A to obtain

ABA = A.

It follows that
A(BA− I) = 0.
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The matrix A is nonsingular by hypothesis. The matrix A times the ith column of
BA− I is zero. Thus, the ith column of BA− I is zero for all i. Thus, BA− I = 0 and
the proof is complete. �

Problems 5.9. Here are some easy questions about inverses.

(a) Suppose that A is an invertible matrix. Is the inverse of A unique?
(b) Suppose that A is an invertible matrix. Is A−1 invertible?
(c) Suppose A and B are invertible matrices of the same shape. Is AB invertible?
(d) Suppose that A is an invertible matrix. Is AT invertible?
(e) How can one tell if the matrix

A =

[
a b
c d

]
is invertible?

Answers.
(a) Yes. Suppose B and C both are inverses of A. Then

C = IC because, this is the property of the identity matrix,

= (BA)C, because B is an inverse of A

= B(AC), because matrix multiplication associates

= BI, because C is an inverse of A

= B, because, this is the property of the identity matrix.

(b) Yes. If A−1 is the inverse of A then A and A−1 are square matrices of the same
size, A−1A = I and AA−1 = I. These three statements are exactly what it takes to
show that A is the inverse of A−1 is A.

(c) Yes. The inverse of AB is B−1A−1 because

(AB)(B−1A−1) = I and (B−1A−1)(AB) = I.

(d) Yes. The inverse of AT is the transpose of A−1. We use Observation 3.5 twice:

(AT)(A−1)T = (A−1A)T = IT = I

and
(A−1)T(AT) = (AA−1)T = IT = I.

(e)11 The matrix A =

[
a b
c d

]
is invertible if and only if ad−bc 6= 0.

11The expression ad− bc is the determinant of A. It is true for all square matrices A that A is
invertible if and only if the determinant of A is non-zero. We are not ready to prove the general state-
ment, but we can easily prove the result for 2×2 matrices. The determinant of a matrix determines
if the matrix is invertible.
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(⇐) Assume ad− bc 6= 0. We prove that A is invertible. Indeed, one easily check
that the inverse of A is

1
ad−bc

[
d −b
−c a

]
.

(⇒)12 Assume ad−bc = 0. We prove that A is singular.13

If ad−bc = 0, then

A
[

d −b
−c a

]
=

[
0 0
0 0

]
.

If any of the four numbers a, b, c, or d are non-zero, then we have exhibited a non-
zero vector which is sent to zero by A; hence A is a singular matrix. On the other
hand, if a = b = c = d = 0, then A is the zero matrix and every vector is sent to zero
by A; hence A is singular in this case also.

Question 5.10. In general, how does one find the inverse of a matrix?

Answer. Apply the technique which was used in the proof of
Theorem 5.8 (a)⇒ (d).

Example 5.11. Let

A =

2 1 1
5 2 1
3 1 1

 .
Find the inverse of A. The inverse of A is

B =

b11 b12 b13
b21 b22 b23
b31 b32 b33


where

A

b11
b21
b31

=

1
0
0

 , A

b12
b22
b32

=

0
1
0

 , and A

b13
b23
b33

=

0
0
1

 .
We have to solve three systems of equations, where each system has 3 equations in
3 unknowns. But the 3×3 matrix of coefficients is same for all three systems. We
apply Elementary Row Operations to 2 1 1 1 0 0

5 2 1 0 1 0
3 1 1 0 0 1

 .
If A is invertible, then eventually, we will obtain[

I | something
]
.

12Actually, I am proving the contrapositive of (⇒). The contrapositive of P =⇒ Q is
not Q =⇒ not P. A statement is equivalent to its contrapositive.

13If A is a square matrix, then singular if A is not nonsingular. We proved that a square matrix is
invertible if and only if it is nonsingular. Hence, a matrix is not invertible if and only it it is singular
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In this case “something” is the inverse of A. Replace R1 by (1/2)R1 and obtain 1 1/2 1/2 1/2 0 0
5 2 1 0 1 0
3 1 1 0 0 1

 .
Replace R2 by R2−5R1 and R3 by R3−3R1 to obtain 1 1/2 1/2 1/2 0 0

0 −1/2 −3/2 −5/2 1 0
0 −1/2 −1/2 −3/2 0 1

 .
Replace R1 by R1+R2 and replace R3 by R3−R2 to obtain 1 0 −1 −2 1 0

0 −1/2 −3/2 −5/2 1 0
0 0 1 1 −1 1

 .
Replace R2 by −2R2 to obtain 1 0 −1 −2 1 0

0 1 3 5 −2 0
0 0 1 1 −1 1

 .
Replace R1 by R1+R3 and R2 by R2−3R3 to obtain 1 0 0 −1 0 1

0 1 0 2 1 −3
0 0 1 1 −1 1

 .
It appears that we calculated that

A−1 =

 −1 0 1
2 1 −3
1 −1 1

 .
Lets check it.

AA−1 =

2 1 1
5 2 1
3 1 1

 −1 0 1
2 1 −3
1 −1 1

=

−2+2+1 1−1 2−3+1
−5+4+1 2−1 5−6+1
−3+2+1 1−1 3−3+1

= I

and

A−1A=

 −1 0 1
2 1 −3
1 −1 1

2 1 1
5 2 1
3 1 1

=

 −2+3 −1+1 −1+1
4+5−9 2+2−3 2+1−3
2−5+3 1−2+1 1−1+1

= I .

We conclude that

A−1 =

 −1 0 1
2 1 −3
1 −1 1

 .
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6. INTRODUCTION TO VECTOR SPACES.

There are two parts to this section:

A. Some random examples of subspaces of Rn and
B. Some official examples of subspaces of Rn.

6.A. Some random examples of subspaces of Rn.

Definition 6.1. A subset V of Rn is called a vector space or a subspace of Rn if

(a) the zero vector is in V ,
(b) V is closed under addition,14

(c) V is closed under scalar multiplication. 15

Examples 6.2. Which of the following sets are vector spaces? Prove your answer.

(a) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣x3 = 2x1 +14x2


(b) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣x3 = 2x1 +14


(c) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣
[

2 3 4
5 6 7

]x1
x2
x3

=

[
0
0

]
(d) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣
[

2 3 4
5 6 7

]x1
x2
x3

=

[
1
2

]
(e) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣x1 = 0


(f) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣x1 = 0 and x2 = 0


(g) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣x1 = 0 or x2 = 0


(h) V =


x1

x2
x3

 ∈ R3

∣∣∣∣∣∣sinx1 = 0


Answers.

14The set V is closed under addition if v1,v2 ∈V implies v1 + v2 ∈V .
15The set V is closed under scalar multiplication if v ∈V and r ∈ R implies rv ∈V .
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(a) Yes. The zero vector is in V . If v1 =

x1
x2
x3

 and v2 =

y1
y2
y3

 are in V , then

x3 = 2x1 +14x2 and y3 = 2y1 +14y2. It follows that

x3 + y3 = 2(x1 + y1)+14(x2 + y2);

hence v1+v2 is in V . Similarly, rx3 = 2(rx1)+14(rx2); hence rv1 ∈V , for any real
number r

(b) No. The zero vector is not in V

(c) Yes. The zero vector is in V . If v1 =

x1
x2
x3

 and v2 =

y1
y2
y3

 are in V , then

2x1 +3x2 +4x3 = 0 and 5x1 +6x2 +7x3 = 0

and

2y1 +3y2 +4y3 = 0 and 5y1 +6y2 +7y3 = 0.

It follows that

2(x1+y1)+3(x2+y2)+4(x3+y3)= 0 and 5(x1+y1)+6(x2+y2)+7(x3+y3)= 0.

Thus, v1 + v2 is in V . Similarly, if r is any real number then

2(rx1)+3(rx2)+4(rx3) = 0 and 5(rx1)+6(rx2)+7(rx3) = 0;

hence rv1 is also in V .

(d) No. The zero vector is not in V .

(e) Yes. The zero vector is in V . If v1 =

x1
x2
x3

 and v2 =

y1
y2
y3

 are in V , then x1 = 0

and y1 = 0. Thus. v1 + v2 =

 0
x2 + y2
x3 + y3

 and this is in V . Similarly rv1 =

 0
rx2
rx3

 and

this is in V .

(f) Yes. The zero vector is in V . If v1 =

x1
x2
x3

 and v2 =

y1
y2
y3

 are in V , then x1 = 0,

x2 = 0, y1 = 0, and y2 = 0. Thus. v1 + v2 =

 0
0

x3 + y3

 and this is in V . Similarly

rv1 =

 0
0

rx3

 and this is in V .
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(g) No. This set is not closed under addition v1 =

1
0
0

 and v2 =

0
1
0

 are both in V ,

but v1 + v2 6∈V .

(h) No. This set is not closed under scalar multiplication: v =

π

0
0

∈V , but 1
2v 6∈V .

6.B. Some official examples of subspaces of Rn: Span (as a noun), Null space,
and Column space. We have used the expression “linear combination” before;
see footnote 8 on page 19. Recall that if v1, . . . ,vr and v are vectors in Rn, then
v is a linear combination of v1, . . . ,vr if there are real numbers c1, . . . ,cr with v =

c1v1 + · · ·+ crvr.

Definition 6.3. If v1, . . . ,vr are elements of Rn, then the span of {v1, . . . ,vr} is

{v ∈ Rn | v is a linear combination of v1, . . . ,vr}.

Observation 6.4. If v1, . . . ,vr are elements of Rn, then the span of {v1, . . . ,vr} is a
subspace of Rn.

Proof. Let V equal the span of {v1, . . . ,vr}.
• We see that the zero vector is in V because 0 = 0v1 + · · ·+0vr.
• We see that V is closed under addition. If v and w are in V , then

v = a1v1 + · · ·+arvr and w = b1v1 + · · ·+brvr

for some ai and bi in R. It follows that

v+w = (a1 +b1)v1 + · · ·+(ar +br)vr,

which is in V .
• We see that V is closed under scalar multiplication. If v ∈ V and c is a

real number, then v = a1v1 + · · ·+ arvr for some ai in R. It follows that
cv = ca1v1 + . . .carvr, which is in V .

�

Questions 6.5.

(a) Is the span of
{[

1
2

]}
equal to all of R2?

(b) Is the span of
{[

1
2

]
,

[
2
4

]}
equal to all of R2?

(c) Is the span of
{[

1
2

]
,

[
3
4

]}
equal to all of R2?

Answers.
(a) No, because

[
1
0

]
is in R2 but not in the span of

{[
1
2

]}
.
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(b) No, because
[

1
0

]
is in R2 but not in the span of

{[
1
2

]}
.

(c) Yes, because Ax = b has a solution for all b in R2, where A =

[
1 3
2 4

]
. To see

this I calculate the determinant of A (which is 1× 4− 3× 2 = −2 6= 0 and apply
Problem 5.9.(e) and Theorem 5.8. (Of course, I could make calculations to reach
the same conclusion.)

Definition 6.6. If A is an m×n matrix, then

{v ∈ Rn | Av = 0}

is called the null space of A.

Example 6.7. The vector spaces (a), (c), (e) and (f) in Example 6.2 all are null
spaces. Example (a) is the null space of

[
−2 −14 1

]
. Example (c) is the null

space of
[

2 3 4
5 6 7

]
. Example (e) is the null space of

[
1 0 0

]
. Example (f) is the

null space of
[

1 0 0
0 1 0

]
.

Observation 6.8. If A is a matrix, then the null space of A is a vector space.

Proof. Let A have m rows and n columns. The zero vector from Rn is in the null
space of A. If v1 and v2 are in the null space of A, then

A(v1 + v2) = Av1 +Av2 = 0+0 = 0.

The first equality holds because matrix multiplication distributes over addition; the
second equality holds because v1 and v2 are in the null space of A. We have shown
that the null space of A is closed under addition. Notice that all three 0’s in the most
recent display are the zero vector in Rm. If r is a real number, then

A(rv1) = rA(v1) = r times the zero vector = 0.

We have shown that the null space of A is closed under scalar multiplication. �

Observation 6.9. Let A be an m× n matrix. Consider the following three subsets
of Rm:

(a) S1 is the span of the columns of A,
(b) S2 is {Av | v ∈ Rn}, and
(c) S3 is {b ∈ Rm | there exists v ∈ Rn with Av = b}.
Then the three sets S1, S2, and S3 are exactly equal.

Proof. Let A∗1, . . . A∗,n be the columns of A.

S1 ⊆ S2: Let w be an element of S1. Then w is a linear combination of A∗1, . . . A∗,n.
Thus, there are numbers c1, . . . ,cn with

w = c1A∗,1 + · · ·+ cnA∗,n.
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The most recent equation can be rewritten as

w = Av, where v =

c1
...

cn

 .
This shows that w ∈ S2.

S2 ⊆ S1: Let w ∈ S2. Then w = Av for some v ∈ Rn. If v =

c1
...

cn

, then w = Av may

be rewritten as
w = c1A∗,1 + · · ·+ cnA∗,n.

The most recent equation exhibits w as a linear combination of the columns of A.
Thus w ∈ S1.

S2 ⊆ S3: Let w be an element of S2. In this case w = Av for some v ∈ Rn. Thus,
w ∈ S3.

S3 ⊆ S2: Take an element b of S3. According to the definition of S3, there exists a
vector v ∈ Rn with b = Av. Now we see that b ∈ S2.

�

Definition 6.10. Let A be an m× n matrix. Any one of the three sets S1, S2, or S3

of Observation 6.9 is called the column space of A.

Problems 6.11.
(a) What is the null space of

[
0 0 0

]
?

(b) What is the column space of
[
0 0 0

]
?

(c) What is the null space of the n×n identity matrix?
(d) What is the column space of the n×n identity matrix?
(e) Suppose A is a nonsingular n×n matrix. What is the null space of A?
(f) Suppose A is a nonsingular n×n matrix. What is the null space of A?
(g) Consider the assigned Homework problems 23–41, When possible describe the

vector space under consideration as a null space or a column space.

Answers.
(a) What is the null space of

[
0 0 0

]
? The null space of

[
0 0 0

]
is R3.

(b) What is the column space of
[
0 0 0

]
? The column space of

[
0 0 0

]
is

{[0]}, which is a subset of R1.
(c) What is the null space of the n×n identity matrix?

The null space of the n×n identity matrix consists of the zero vector in Rn.
(d) What is the column space of the n×n identity matrix? The column space of

the n×n identity matrix is all of Rn.
(e) Suppose A is a nonsingular n×n matrix. What is the null space of A? The

null space of an n×n nonsingular matrix consists of the zero vector in Rn.
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(f) Suppose A is a nonsingular n×n matrix. What is the column space of A?
The column space of an n×n nonsingular matrix is all of Rn.

(g) Consider the assigned Homework problems 23–41, When possible describe
the vector space under consideration as a null space or a column space.
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7. THE OFFICIAL DEFINITION OF A VECTOR SPACE AND MANY MORE

EXAMPLES.

Definition 7.1. A vector space over R is a set V together with two operations called
addition and scalar multiplication which satisfy the following properties.

(a) (closure under addition) If v1 and v2 are in V , then v1 + v2 is in V .
(b) (addition associates) If v1,v2,v3 are in V , then

v1 +(v2 + v3) = (v1 + v2)+ v3.

(c) (additive identity element) There exists an element 0 in V with 0+ v = v for all
v ∈V .

(d) (additive inverses) If v is an element of V , then there is an element−v of V with
v+(−v) = 0.

(e) (addition commutes) If v1 and v2 are in V , then v1 + v2 = v2 + v1.
(f) (closure under scalar multiplication) If r ∈ R and v ∈V , then rv ∈V .
(g) If r ∈ R and v1 and v2 are in V , then

r(v1 + v2) = rv1 + rv2.

(h) If r1 and r2 are in R and v ∈V , then

(r1 + r2)v = r1v+ r2v.

(i) If r1 and r2 are in R and v ∈V , then

(r1r2)v = r1(r2v).

(j) If 1 is the real number 1 and v ∈V , then 1v = v.

Remark 7.2. If (V,+) is a set together with one operation which satisfies properties
(a)-(e), then V is called an Abelian group. (Groups are the main object studied in
Math 546.)

Remark 7.3. The rules do not state that the zero element of R times an arbitrary
element of a vector space V is equal to the zero element of V . However, this state-
ment follows quickly from the axioms. Indeed, if V is a vector space, 0R is the zero
element of R, 0V is the zero element of V , and v ∈V , then

0Rv = (0R+0R)v = 0Rv+0Rv.

Add −(0Rv) to both sides; associate; use the property of additive inverse; and use
the property of additive identity. Conclude that

0V = 0Rv.

Examples 7.4. (a) If n is a positive integer, then Rn is a vector space over R,
(b) If m and n are positive integers, then the set of m×n matrices is a vector space

over R, denoted Matm×n(R). In particular, the set of row vectors with n entries
is a vector space for each positive integer n.
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(c) If a < b are real numbers, then the set of continuous functions from the closed
interval [a,b] to R is a vector space over R, denoted C [a,b].

(d) The set of polynomials in one variable over R is a vector space over R, denoted
R[x].

(e) The set of polynomials of degree at most n in one variable over R is a vector
space over R, denoted Pn.

Definition 7.5. If W ⊆V are vector spaces with the same addition and scalar mul-
tiplication, then W is a subspace of V .

Observation 7.6. Let V be a vector space. If W is a non-empty subset of V which
is closed under addition and scalar multiplication, then W is a subspace of V .

Proof. All of the other axioms of vector space hold automatically in W because
they hold in V .

In particular, The zero element of V is automatically an element of W . Indeed,
we are promised that W has at least one element. Let w be an element of W . We are
also promised that W is closed under scalar multiplication; so

0Rw ∈W.

Apply Remark 7.3 to conclude that 0V ∈W . �

Example 7.7. If A is an m× n matrix, then the set of row vectors which can be
written as a linear combination of the rows of A is a vector space, which we call
the row space of A. Notice that if the matrix B is obtained from the matrix A by
applying a sequence of Elementary Row Operations, then the matrices A and B have
the same row space.

Examples 7.8. Consider the following subsets of P3. Which are subspaces of P3?

(a) V1 = { f (x) ∈P3 | f (0) = 0},
(b) V2 = { f (x) ∈P3 | f (1) = 0},
(c) V3 = { f (x) ∈P3 | f (0) = 1},
(d) V4 = { f (x) ∈P3 | f (1) = 1},
(e) V5 = { f (x) ∈P3 | f (1) = 0 and f ′(1) = 0}.

Answers. It is easy to see that V1, V2, and V5 all are non-empty and closed under
addition and scalar multiplication. Thus, V1, V2, and V5 are subspaces of P3, On
the other hand, the zero polynomial is not in V3 or V4; so neither of these sets is a
subspace of P3. (We are using the proof of Observation 7.6. If W is a subspace of
V , then the zero element of V must be in W .)

Examples 7.9. Consider the following subsets of Mat2×2(R). Which are subspaces
of Mat2×2(R)?

(a) V1 =

{[
a b
c d

]∣∣∣∣a = 0
}
,
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(b) V2 =

{[
a b
c d

]∣∣∣∣a+b = 0
}
,

(c) V3 =

{[
a b
c d

]∣∣∣∣ab = 0
}
,

(d) V4 =

{[
a b
c d

]∣∣∣∣a = 1
}
,

(e) V5 =

{[
a b
c d

]∣∣∣∣b = c
}
.

Answers. It is easy to see that V1, V2, and V5 all are non-empty and closed under
addition and scalar multiplication. Thus, V1, V2, and V5 are subspaces of Mat2×2(R).
The zero matrix is not in V4, hence is not a subspace of Mat2×2(R). (Once again,
we use the proof of Observation 7.6. If W is a subspace of V , then the zero element

of V must be in W .) The set V3 is not closed under addition. For example,
[

1 0
0 0

]
and

[
0 1
0 0

]
are both in V3, but

[
1 0
0 0

]
+

[
0 1
0 0

]
is not in V3. Thus V3 is not a vector

space.
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8. BASES FOR VECTOR SPACES

Definition 8.1. Let v1, . . . ,vp be elements of the vector space V .

(a) 16 The vectors v1, . . . ,vp are linearly independent if the only numbers c1, . . . ,cp

with ∑
p
i=1 civi = 0 are c1 = · · ·= cp = 0.

(b) 17 The vectors v1, . . . ,vp span V if every element of V is equal to a linear com-
bination of v1, . . . ,vp.

(c) The vectors v1, . . . ,vp are a basis for V if v1, . . . ,vp span V and are linearly
independent.

Examples 8.2. (a) The vectors

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

0
0
1


form a basis for R3.

Indeed, the vectors v1, v2, v3 are linearly independent. If c1,c2,c3 are num-
bers with

c1v1 + c2v2 + c3v3 =

0
0
0

 ,
then c1

c2
c3

=

0
0
0


and c1 = 0, c2 = 0, and c3 = 0.

Also, the vectors v1, v2, v3 span R3. If

v =

a
b
c


is an arbitrary element of R3, then v can be written as a linear combination of
v1, v2, and v3. Indeed,

v = av1 +bv2 + cv3.

(b) The vectors

v1 =

 1
6

94

 , v2 =

 0
1

122

 , v3 =

0
0
1


form a basis for R3.

16The concept of linearly independent vectors was introduced in Definition 4.1. We have changed
nothing. We emphasize that the notion of linear independence makes sense in every vector space.

17We defined “span” as a noun in Definition 6.3. Here we define “span” as a verb.
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Indeed, the vectors v1, v2, v3 are linearly independent. If c1,c2,c3 are num-
bers with

c1v1 + c2v2 + c3v3 =

0
0
0

 ,
then  c1

6c1 + c2
94c1 +122c2 + c3

=

0
0
0


and c1 = 0 from the top row, c2 = 0 from the second row, and c3 = 0 from the
third row.

Also, the vectors v1, v2, v3 span R3. If

v =

a
b
c


is an arbitrary element of R3, then v can be written as a linear combination of
v1, v2, and v3. Indeed,

v = av1 +(b−6a)v2 +(c−94a−122(b−6a))v3.

(c) The vectors

v1 =

2
5
3

 , v2 =

1
2
1

 , v3 =

1
1
1


form a basis for R3.

For this one I appeal to Example 5.11, where we proved that the matrix whose
columns are v1, v2, v3 is an invertible matrix. The columns of an invertible ma-
trix are linearly independent (by, say the Nonsingular Matrix Theorem, Theo-
rem 5.8). Thus, v1, v2, v3 are linearly independent.

The vectors v1, v2, v3 span R3. Indeed, if v is an arbitrary vector in R3, then[
v1|v2|v3

]
x = v

has a (unique) solution by the Nonsingular Matrix Theorem (again). In other
words, v can be written as a linear combination of v1, v2, v3.

(d) The polynomials 1,x,x2,x3 are a basis for P3.
These polynomials span P3 because every element of P3 is equal to r0 +

r1x+ r2x2 + r3x3, for some ri ∈ R.
These polynomials are linearly independent because, if p(x) = r0 + r1x +

r2x2 + r3x3 is the zero polynomial, then all of the coefficients are zero.
(e) The polynomials 1,x−1,(x−1)2,(x−1)3 are a basis for P3.

These polynomials span P3 because if p(x) is an arbitrary element of P3,
then

p(x) = p(1)+ p′(1)(x−1)+
p′′(1)

2
(x−1)2 +

p′′′(1)
3!

(x−1)3.
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(I have recorded the Taylor’s series for p(x) about x = 1. If you don’t trust
this argument you can create a grubbier argument that expresses an arbitrary
element p(x) from P3 in terms of 1, x−1, (x−1)2, and (x−1)3. Once you get
your answer. Step back and look at it. You will see that you have produced the
answer given by Taylor’s Theorem.)

The polynomials 1,x−1,(x−1)2,(x−1)3 are linearly independent. Suppose
c0,c1,c2,c3 are real numbers with

(8.2.1) c0 + c1(x−1)+ c2(x−1)2 + c3(x−1)3

equal to the zero polynomial. The coefficient of x3 in the zero polynomial is
zero. So the coefficient of x3 in (8.2.1). The coefficient of x3 in (8.2.1) is c3.
Thus, c3 must be zero.

The coefficient of x2 in the zero polynomial is zero. The coefficient of x2 in
(8.2.1) (now that c3 = 0) is c2. Thus, c2 must also be zero. etc.

(f) The matrices
[

1 0
0 0

]
,
[

0 1
0 0

]
,
[

0 0
1 0

]
,
[

0 0
0 1

]
is a basis for Mat2×2(R).

8.A. How to find bases for the row space, the null space, and the column space
of a matrix.

Observation 8.3. Let A be a matrix. Apply Elementary Row Operations to A in or-
der to obtain a matrix B which is in Reduced Row Echelon Form. Then the following
statements hold.

(a) The non-zero rows of B are a basis for the row space of A.
(b) The matrices A and B have the same null space and it is easy to read a basis for

the null space of B.
(c) The columns in A which correspond to the leading ones in B form a basis for

the column space of A.

Example 8.4. Let A =

[
1 2 3
2 4 6

]
. Find bases for the row space, null space, and

column space of A. Replace R2 by R2-2R1 to obtain B =

[
1 2 3
0 0 0

]
. Observe that

B is in Reduced Row Echelon Form.
The matrix B has one non-zero row. We conclude that

the vector
[
1 2 3

]
is a basis for the row space of A.

We read the null space of A from B. When one writes Bx = 0 one obtains the
equation x1 +2x2 +3x3 = 0, which means x2 and x3 are free to take any value and

x1 =−2x2−3x3.

In other words, x1
x2
x3
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is in the null space of A if and only ifx1
x2
x3

= x2

−2
1
0

+ x3

−3
0
1

 .
We see that −2

1
0

 ,
−3

0
1


span the null space of A. It is also clear that these two vectors are linearly indepen-
dent.

The vectors

−2
1
0

 ,
−3

0
1

form a basis for the null space of A.

The matrix B has one leading one. This leading one is in column 1. Thus, column
1 of A is a basis for the column space of A.

The vector
[

1
2

]
is a basis for the column space of A.

Proof. (a) The row space of A is equal to the row space of B. It suffices to show that
the non-zero rows of B form a basis for the row space B. It is clear that the non-zero
rows of B span the row space of B. Each non-zero row of B contains a leading one.
The entries in B above and below the leading one all are zero. Thus, the non-zero
rows of B are linearly independent.

(b) It is clear that if the matrix M′ is obtained from the matrix M by way of an
elementary row operation, then M′ and M have the same null space. (To see this,
consider the elementary row operations one at a time. If I exchange two rows of M,
then the new matrix has the same null space as the old matrix. If I multiply one row
of M by a non-zero constant, then the new matrix has the same null space as the old
matrix. If I add a non-zero multiple of one row to another row then the two matrices
have the same null space.) Thus, A and B have the same null space. It is easy to
read a basis of the null space from B; but that is not a statement that is provable. (It
is a value judgment.) There is nothing to prove.

(c) It is fairly easy to make sense of (c); but fairly cumbersome to write down a
proof. The point is that if xi is a free variable, then there is an element in the null
space of A which involves one copy of column i of A and the columns of A which
correspond to leading variables. Thus, column i is in the span of the columns of A
which correspond to leading variables. Make this observation for each column of
A which corresponds to a free variable and conclude that the column space of A is
spanned by the columns of A which corrpespond to leadings. Observe further, that
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the only element in the null space of A which has zero in the rows corresponding to
leading ones is the element zero. �

Example 8.5. Let

A =

1 4 5 1 8
1 4 5 2 10
3 12 15 4 26

 .
Find a basis for the row space, the null space, and the column space of A. Express
each row of A in terms of the proposed basis for the row space of A. Express each
column of A in terms of the proposed basis for the column space of A.

Apply elementary row operations to A in order to obtain the matrix

B =

1 4 5 0 6
0 0 0 1 2
0 0 0 0 0

 ,
which is in row echelon form.

Here are the row operations. Start with1 4 5 1 8
1 4 5 2 10
3 12 15 4 26

 .
Replace Row 2 with Row 2 minus Row 1. Replace Row 3 with Row 3 minus 3 Row
1 to get 1 4 5 1 8

0 0 0 1 2
0 0 0 1 2

 .
Replace Row 1 with Row 1 minus Row 2 and replace Row 3 with Row 3 minus
Row 2 to get 1 4 5 0 6

0 0 0 1 2
0 0 0 0 0

 .
The matrices A and B have the same null space. We see from B that the null space

of A is equal to


x1
x2
x3
x4
x5


∣∣∣∣∣∣∣∣∣∣


x1
x2
x3
x4
x5

= x2


−4
1
0
0
0

+ x3


−5
0
1
0
0

+ x5


−6
0
0
−2
1

 , where x2, x3, and x5 are arbitrary elements in R

 .

(You are welcome to put an intermediate step here if you like.)
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In particular,

v1 =


−4
1
0
0
0

, v2 =


−5
0
1
0
0

, v3 =


−6
0
0
−2
1


is a basis for the null space of A. Furthermore, the fact that v1 is in the null
space of A tells us that A∗2 = 4A∗1 ; the fact that v2 is in the null space of A
tells us that A∗3 = 5A∗1 ; and the fact that v3 is in the null space of A tells us
that A∗5 = 6A∗1 +2A∗4 . We conclude that the column space of A is spanned by
{A∗1,A∗4}. We wonder if the vectors A∗1,A∗4 are linearly independent. That is the
same as wondering if there are any non-zero vectors in the null space of A of the
form 

∗
0
0
∗
0

?

The answer is no. Every element in the null space of A has the form

c1v1 + c2v2 + c3v3 =


−4c1−5c2−6c3

c1
c2
−2c3

c3


for some numbers c1,c2,c3. Of course, when we compare rows 2, 3, and 5 of

∗
0
0
∗
0

=


−4c1−5c2−6c3

c1
c2
−2c3

c3

 ,
we learn that c1 = c2 = c3 = 0, hence both ∗’s are zero and A∗1,A∗4 are linearly
independent. We conclude that

A∗1,A∗4 is a basis for the column space of A.

The matrices A and B have the same row space. The vectors

w1 =
[
1 4 5 0 6

]
and w2 =

[
0 0 0 1 2

]
form a basis for the row space of A. We see that

A1∗ = w1 +w2, A2∗ = w1 +2w2, and A3∗ = 3w1 +4w2.
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9. VECTOR SPACE DIMENSION.

Definition 9.1. If the vector space V has a finite basis, then V is a finite dimensional
vector space.

In this section we prove four theorems about finite dimensional vector spaces.
(These theorems continue to hold for arbitrary vector spaces provided one uses the
notion of “cardinality” in place of the notion of the “number of elements”. Signifi-
cantly more care is required in the general case.)

Theorem 9.2. Every basis for the finite dimensional vector space V has the same
number of vectors.

We use the following Lemma twice to prove Theorem 9.2.

Lemma 9.3. If v1, . . . ,vq span the vector space V and u1, . . . ,up are elements of V
with q < p, then u1, . . . ,up are linearly dependent.

The Lemma reminds us of the short/fat theorem (Theorem 4.8) which states that
if q < p, then every collection of p vectors in Rq is linearly dependent. Indeed,
we will prove the Lemma by maneuvering the given data into the hypotheses of
Theorem 4.8. The vector space V might not be Rq; but there are column vectors
with q entries that are very relevant.

Proof. Write u j = ∑
q
i=1 ai jvi, with ai j ∈ R. The columns of

A =

a11 . . . a1p
...

...
aq1 . . . aqp


are p vectors in Rq with q < p. Theorem 4.8 guarantees that there exists a nonzero

vector c =

c1
...

cp

 in Rp with Ac = 0. Observe that
p
∑
j=1

c ju j = 0. Indeed,

p

∑
j=1

c ju j =
p

∑
j=1

c j

(
q

∑
i=1

ai jvi

)
=

q

∑
i=1


p

∑
j=1

c jai j︸ ︷︷ ︸
0

vi = 0.

We have identified numbers c1, . . . ,cp, not all of which are zero, with
p
∑
j=1

c ju j = 0. Thus, we have shown that u1, . . . ,up are linearly dependent. �

Proof of Theorem 9.2. The hypothesis guarantees that some basis of V is finite.
Thus, Lemma 9.2 guarantees that every basis of V is finite. Let v1, . . . ,vn and
w1, . . . ,wm be bases for V .
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Apply Lemma 9.3 to the spanning set v1, . . . ,vn and the linearly independent set
w1, . . . ,wm to see that m≤ n. Now apply Lemma 9.3 to the spanning set w1, . . . ,wm

and the linearly independent set v1, . . . ,vn to see that m ≤ n. Conclude that m = n.
�

Definition 9.4. If V is a finite dimensional vector space, then the number of ele-
ments in a basis for V is called the dimension of V .

Theorem 9.5. If V is a finite dimensional vector space, then every linearly inde-
pendent subset in V is part of a basis for V .

Proof. Let d = dimV . By hypothesis, there exists a basis of V with d elements.
Apply Lemma 9.3 to see that every subset of V with d + 1 elements is linearly
dependent. Conclude that

(9.5.1)

{
every linearly independent subset of V with d elements
is already a basis for V .

Let v1, . . . ,vi be a linearly independent subset of V . If v1, . . . ,vi span V , then
v1, . . . ,vi is a basis for V and the proof is complete. If v1, . . . ,vi do not span V , then
there is an element vi+1 in V but not in the span of v1, . . . ,vi. Observe v1, . . . ,vi+1 is a
linearly independent subset of V . Proceed in this manner. According to (9.5.1), the
process stops once your list of linearly independent vectors contains d vectors. �

Theorem 9.6. If V is a finite dimensional vector space, then every subset of V
which spans V contains a basis for V .

Proof. Let S be a set of elements of V which spans V .
We first show that some finite subset of S also spans V . Let d = dimV . By

hypothesis, there exists a basis of V with d elements. Each element of this basis is a
finite linear combination of elements of S. A finite union of finite sets is finite. We
have identified a finite subset S′ of S that spans V .

The rest of the proof is easy. We throw elements of S′ away, one at a time, until
we have a basis for V . If S′ is linearly independent, then S′ is a basis for V . If S′

is linearly dependent, then an element s1 of S′ can be written in terms of the other
elements. Throw this away. We still have that S′ \{s1} spans V .

We continue in this manner until we obtain a subset S′′ of S which spans V and
has d elements. No proper subset of S′′ can span V by Lemma 9.3 (because we have
a linearly independent subset of V with d elements). Thus, S′′ must both span V and
be linearly independent. We have produced a basis for V which is a subset of the
original set S. �

Theorem 9.7. If M is a matrix, then the dimension of the column space of M plus
the dimension of the null space of M is equal to the number of columns of M.
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Remarks. (a) This theorem is usually called the “Rank-Nullity Theorem” because
the dimension of the column space of M is called the rank of M and the dimen-
sion of the null space of M is called the nullity of M.

(b) I think of this result as a conservation result (as in conservation of energy).
One must account for all of the vector space dimension. Here is what I mean.
Suppose M is an m×n matrix. Then multiplication by M is a function Rn→Rm.
The image of this map is the column space of M which is a subspace of Rm.
The stuff that was burned (that is sent to zero) is the null space of M, which is
a subspace of Rn. The theorem says that the dimension of the domain (that is
n) is equal to the dimension of the image (that is rankM) plus the dimension of
the stuff that was burned (that is the nullity of M).

Proof. Let M be an m×n matrix. Let v1, . . . ,vs in Rn be a basis for the null space of
M and let w1, . . . ,wt in Rn be vectors with Mw1, . . . ,Mwt are a basis for the column
space of M.

We prove that v1, . . .vs,w1, . . . ,wt is a basis for Rn.
First we show that the vectors v1, . . . ,vs,w1 . . .wt are linearly independent. Sup-

pose

(9.7.1)
s

∑
i=1

aivi +
t

∑
j=1

b jw j = 0

for numbers a1, . . . ,at ,b1, . . . ,bs. Multiply by M to see that ∑
t
j=1 b jMw j = 0. The

vectors Mw1, . . . ,Mwt are linearly independent; hence, each b j is equal to zero. and
(9.7.1) becomes

s

∑
i=1

aivi = 0.

The vectors v1, . . . ,vs are linearly independent; thus, each ai is also equal to zero.
Now we show that v1, . . . ,vs,w1 . . .wt span Rn. Let u be an arbitrary element

of Rn. Observe that Mu is in the vector space spanned by Mw1, . . . ,Mwt . Hence
there are numbers β1 . . . ,βt with Mu = ∑

t
j=1 β jMw j. Rewrite the last equation to

see that u−∑
t
j=1 β jw j is in the null space of M. It follows that there exist numbers

α1, . . . ,αs with

u−
t

∑
j=1

β jw j =
s

∑
i=1

αivi.

�

Corollary 9.8. If M is a matrix, then the row space of M and the column space of
M have the same dimension.

Proof. Apply elementary row operations to M to obtain a matrix B in row echelon
form. The dimension of the row space of M is equal to the number of nonzero rows
in B, which is the same as the number of leading ones in B. The dimension of the
null space of M is equal to the number of columns of B without a leading one. Thus,
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the dimension of the row space of M plus the dimension of the null space of M is
equal to the number of columns of M. On the other hand, the rank-nullity theorem
shows that the dimension of the column space of M plus the dimension of the null
space of M is equal to the number of columns of M. The stated result follows. �

Problems 9.9. Let V be a vector space.

(a) Suppose dimV = n and v1, . . . ,vn are linearly independent vectors in V . What
else do you know for sure? Why?

(b) Suppose dimV = n and v1, . . . ,vn span V . What else do you know for sure?
Why?

(c) Suppose V1 is a subspace of V with V1 6= V . Suppose further that v1, . . . ,vn−1

are elements of V1 which are linearly independent. What else do you know for
sure? Why?

(d) Let V be the vector space

V = {p(x) ∈P|p(1) = 0 and p′(1) = 0}.

Find a basis for V . If possible, find your basis with out doing any hard work.
(e) Suppose U ⊆V are finite dimensional vector spaces and that u1, . . . ,ur is a basis

for U . Prove that there exist v1, . . . ,vs in V so that u1, . . . ,ur,v1, . . . ,vs is a basis
for V .
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10. LINEAR TRANSFORMATIONS.

Definition 10.1. A function T : V →W from the vector space V to the vector space
W is called a linear transformation if

(a) T (v1 + v2) = T (v1)+T (v2) for all v1 and v2 in V , and
(b) T (rv) = rT (v) for all r ∈ R and v ∈V .

Examples 10.2. (a) If A is an m×n matrix, then the function T : Rn→ Rm, which
is given by T (v) = Av, for all v ∈V , is a linear transformation.

(b) Let C be the set of all functions from R to R, C 1 be the set of all differentiable
functions from R to R, and T : C 1→ C be differentiation. Then T is a linear
transformation.

(c) Let C be the set of continuous function from the closed interval [0,1] to R.
Then T : C → R given by T ( f ) =

∫ b
a f (x)dx is a linear transformation.

(d) Let V be a vector space of dimension n and v1, . . . ,vn be a basis for V . Call this
basis B. For each vector v ∈V , let [v]B be the column vectorc1

...
cn


in Rn with v = ∑i=1 civi. (The vector [v]B is called
the coordinate vector of v with respect to the basis B of V .) The function
T : V → Rn which is given by T (v) = [v]B is a linear transformation.

(e) Let T : Rn→ Rm be a linear transformation. Let A be the m×n matrix

A =
[
T (e1)|T (e2)| · · · |T (en)

]
,

where e j is the element of Rn with 1 in row j and zero everywhere else. Then
T (v) = Av for18 all v in Rn.

(f) Let T : R2→ R2 be the function which fixes the origin and rotates the xy-plane
by φ radians counter-clock-wise. Find a matrix A with T v = AV for all v ∈ R2.
Conclude that T is a linear transformation.

To do this problem we use polar coordinates[
x
y

]
=

[
r cosθ

r sinθ

]
and

T
([

x
y

])
=

[
r cos(θ+φ)
r sin(θ+φ)

]
.

I put a picture on the next page.

18One reads this equation as T OF v is equal to A TIMES v.
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It would be useful if you know

cos(θ+φ) = cosθcosφ− sinθsinφ(10.2.1)

sin(θ+φ) = sinθcosφ+ cosθsinφ

Maybe you learned these things in High School; maybe you did not learn them
until you took Differential Equations (Math 242 or Math 552). At any rate Euler
proved that

eiθ = cosθ+ isinθ.

We can see this using Taylor’s series:

ez = 1+ z+
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!
+ . . . ,

cos(z) = 1− z2

2!
+

z4

4!
− . . . ,

sin(z) = z− z3

3!
+

z5

5!
+ . . . ,

for all complex numbers z. It follows that

eiθ = 1+(iθ)+
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ . . .

= 1− θ2

2!
+

θ4

4!
−·· ·+ i

(
θ− θ3

3!
+

θ5

5!
+ . . .

)
= cosθ+ isinθ.

At any rate,

(cosθcosφ− sinθsinφ)+ i(sinθcosφ+ cosθsinφ)

= (cosθ+ isinθ)(cosφ+ isinφ)

= eiθeiφ = ei(θ+φ)

= cos(θ+φ)+ isin(θ+φ).

Equate the real and imaginary components to conclude (10.2.1).
Now we see that

T
([

x
y

])
=T
([

r cosθ

r sinθ

])
=

[
r cos(θ+φ)
r sin(θ+φ)

]
=

[
r cosθcosφ− r sinθsinφ

r sinθcosφ+ r cosθsinφ

]
=

[
xcosφ− ysinφ

ycosφ+ xsinφ

]
=

[
cosφ −sinφ

sinφ cosφ

][
x
y

]
.

Thus T is a linear transformation as we claimed.
(g) Find a matrix A so that Av is the reflection of v across the x-axis for all v in R2.
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This is easy. When
[

x
y

]
is reflected across the x-axis, the result is

[
x
−y

]
. It

follows that

A =

[
1 0
0 −1

]
.

(h) Let ` be the line in R2 through the origin which makes the angle φ with the
positive x-axis. Let T : R2→ R2 be the function which fixes ` and reflects the
xy-plane across `. Find a matrix A with T v = AV for all v ∈ R2. Conclude that
T is a linear transformation.

We find A in three steps.
• Rotate ` to become the x-axis.
• Reflect across the x-axis.
• Rotate the x-axis back to `.

So,

A =

[
cosφ −sinφ

sinφ cosφ

][
1 0
0 −1

][
cos(−φ) −sin(−φ)
sin(−φ) cos(−φ)

]
=

[
cosφ sinφ

sinφ −cosφ

][
cosφ sinφ

−sinφ cosφ

]
=

[
cos2 φ− sin2

φ 2cosφsinφ

2sinφcosφ sin2
φ− cos2 φ

]
=

[
cos(2φ) sin(2φ)
sin(2φ) −cos(2φ)

]
.

Once again, we conclude that T is a linear transformation as claimed.
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11. EIGENVALUES AND EIGENVECTORS.

Definition 11.1. Let A be an n× n matrix. The number λ is an eigenvalue of A if
there is a non-zero vector v∈Rn with Av= λv. If λ is an eigenvalue of A, then every
vector v (including the zero vector) with Av = λv is an eigenvector of A associated
to the eigenvalue λ.

Example 11.2. Let A =

[
1 2
0 3

]
. Observe that

A
[

1
0

]
=

[
1
0

]
.

It follows that 1 is an eigenvalue of A and
[

1
0

]
is an eigenvector of A associated to

the eigenvalue 1. Observe also, that

A
[

1
1

]
=

[
3
3

]
= 3

[
1
1

]
.

It follows that 3 is an eigenvalue of A and
[

1
1

]
is an eigenvector of A associated to

the eigenvalue 3.

11.A. How does one find the eigenvalues of the square matrix A. Observe that

λ is an eigenvalue of A

⇐⇒ Av = λv for some non-zero vector v

⇐⇒ (A−λI)v = 0 for some non-zero vector v

⇐⇒ A−λI is a singular matrix

⇐⇒ det(A−λI) = 0

Actually, you might not know the last step. Recall that the determinant of the 2×2
matrix

A =

[
a b
c d

]
is ad − bc. Furthermore, A is nonsingular if and only if detA 6= 0. See 5.9.(e)
on page 28. We will not have time to deal with determinants for bigger matrices.
Nonetheless, if A is a square matrix, then there is a number associated to A, called
detA and A is nonsingular if and only if detA 6= 0.

At any rate,

True Statement 11.3. The number λ is an eigenvalue of the square matrix A if and
only if det(A−λI) = 0.

Example 11.4. Find all eigenvalues of A =

[
1 2
0 3

]
.
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Well, det(A−λI) = det
[

1−λ 2
0 3−λ

]
= (1−λ)(3−λ). Thus, det(A−λI) = 0

if only if (1−λ)(3−λ) = 0. The eigenvalues of A are λ = 1 and λ = 3.

11.B. Once you know that the number λ is an eigenvalue of the square matrix
A, how do you find all of the eigenvectors of A associated to the eigenvalue λ?

Remark 11.5. Notice, first of all, the the set of all eigenvectors of A associated to
the eigenvalue λ is a vector space. Indeed this set is the null space of A−λI.

Definition 11.6. If λ is an eigenvalue of the square matrix A, then the eigenspace
of A associated to λ is the set of all eigenvectors of A associated to λ.

Example 11.7. Find all eigenvectors of the matrix A =

[
1 2
0 3

]
.

We saw in Example 11.4 that the eigenvalues of A are 1 and 3.

• We find the eigenspace of A associated to λ = 1. That is, we find all vectors

x =
[

x1
x2

]
such that

Ax = 1x.

In other words, we find all x with

(A− I)x = 0.

We find the null space of

A− I.

We find the null space of

(11.7.1)
[

0 2
0 2

]
.

If you apply Elementary Row Operations (ERO) you obtain

(11.7.2)
[

0 1
0 0

]
.

(Of course, the point of (EROs) is that the matrices (11.7.1) and (11.7.2)
have the same null space. The null space of (11.7.2) is the vector space with
basis19

v1 =

[
1
0

]
.

The eigenspace of A associated to the eigenvalue λ = 1 is the vector space with basis v1 =

[
1
0

]
.

is half of our answer.

19This is not a big deal. We see that x1 is a free variable and x2 is required to be zero.
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• We find the eigenspace of A associated to λ = 3. That is, we find all vectors

x =
[

x1
x2

]
such that

Ax = 3x.

In other words, we find all x with

(A−3I)x = 0.

We find the null space of
A−3I.

We find the null space of

(11.7.3)
[
−2 2
0 0

]
.

If you apply Elementary Row Operations (ERO) you obtain

(11.7.4)
[

1 −1
0 0

]
.

(Of course, the point of (EROs) is that the matrices (11.7.3) and (11.7.4)
have the same null space. The null space of (11.7.4) is the vector space with
basis20

v2 =

[
1
1

]
.

The eigenspace of A associated to the eigenvalue λ = 3 is the vector space with basis v2 =

[
1
1

]
.

is the other half of our answer.

20This is not a big deal. We see that x2 is a free variable and x1 is required to be x2.
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12. DIAGONALIZATION.

There are many procedures which are easy for numbers and easy for diagonal
matrices, but hard for ordinary matrices.

In this discussion, let a be a number,

D =


d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0

. . .
0 0 0 . . . dn


be a diagonal matrix, and A be an arbitrary matrix.

• raising to a power: am is easy and

Dm =


dm

1 0 0 . . . 0
0 dm

2 0 . . . 0
0 0 dm

3 . . . 0
. . .

0 0 0 . . . dm
n


is easy; but Am is a nuisance;
• taking the limit of the mth power: lim

m→∞
am is easy and

lim
m→∞

Dm =



lim
m→∞

dm
1 0 0 . . . 0

0 lim
m→∞

dm
2 0 . . . 0

0 0 lim
m→∞

dm
3 . . . 0

. . .
0 0 0 . . . lim

m→∞
dm

n


is easy; but it is not at all clear how one computes (or if one can compute)
lim

m→∞
Am. (These are interesting problems if the entry of the matrix in row

i column j represents the probability in some Markov process of moving
from state i to state j, when one wants to learn the ultimate state of the
process.)
• Linear Differential equations. It is easy to solve the linear differential equa-

tion dy
dx = ay. (The solution is y = ceax.) It is easy to solve the system of

linear differential equations
dy1
dx
dy2
dx
...

dyn
dx

= D

y1
...

yn

 .
The solution is

y1 = c1ed1x, . . . ,yn = cnednx.
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But it is harder to solve 
dy1
dx
dy2
dx
...

dyn
dx

= A

y1
...

yn

 .
• taking roots: It is easy to find

√
a. It is easy to find a matrix B with B2 = D;

namely

B =


√

d1 0 0 . . . 0
0
√

d2 0 . . . 0
0 0

√
d3 . . . 0

. . .
0 0 0 . . .

√
dn


But it is not clear how one might find B with B2 = A, when A is an arbitrary
matrix.

Definition 12.1. The square matrices A and B are similar if there exists an invertible
matrix P with A = PBP−1.

Definition 12.2. The square matrix A is diagonalizable if A is similar to a diagonal
matrix.

Theorem 12.3. Let A be an n× n matrix. If v1, . . . ,vn are linearly independent
vectors and each vi is an eigenvector of A, then A is diagonalizable.

Proof. Suppose Avi = λivi for all i. Observe that

A
[
v1|v2| · · · |vn

]
=
[
v1|v2| · · · |vn

]
λ1 0 . . . 0
0 λ2 . . . 0

0 0 . . . 0
0 0 . . . λn

 .
Let D be the diagonal matrix

D =


λ1 0 . . . 0
0 λ2 . . . 0

0 0 . . . 0
0 0 . . . λn


and P be the invertible21 matrix

[
v1|v2| · · · |vn

]
. We have shown that A = PDP−1.

Thus, we have shown that A is diagonalizable. �

Example 12.4. Let A =

[
7 6
−3 −2

]
. Find a matrix B with B2 = A.

We diagonalize A. Find the eigenvalues and eigenvectors of A (See for example
Examples 11.4 and 11.7.)

21The columns of P are linearly independent; so P is invertible.
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At any rate, the eigenvalues of A are 1 and 4. Furthermore,

A
[

1
−1

]
= 1

[
1
−1

]
and A

[
2
−1

]
= 4

[
2
−1

]
.

Let D =

[
1 0
0 4

]
and P =

[
1 2
−1 −1

]
. We have shown that AP = PD; hence

A = PDP−1. Let B = P
[

1 0
0 2

]
P−1. Observe that

B2 =

(
P
[

1 0
0 2

]
P−1

)(
P
[

1 0
0 2

]
P−1

)
=P

[
1 0
0 2

][
1 0
0 2

]
P−1 =P

[
1 0
0 4

]
P−1 =A.

Let us do the arithmetic in order to actually exhibit B. Well,22

B=P
[

1 0
0 2

]
P−1 =

[
1 2
−1 −1

][
1 0
0 2

][
−1 −2
1 1

]
=

[
1 4
−1 −2

][
−1 −2
1 1

]
=

[
3 2
−1 0

]
.

We check

B2 =

[
3 2
−1 0

][
3 2
−1 0

]
=

[
7 6
−3 −2

]
= A .

22I used Example 5.9.(e) to find P−1.



60 MATH 544, SPRING 2022

13. ORTHOGONAL SETS.

Definition 13.1. The set of vectors u1, . . . ,up in Rn is an orthogonal set if uT
i u j = 0,

for i 6= j.

Examples 13.2. • The vectors1
0
0

 ,
0

1
0

 ,
0

0
1


form an orthogonal set.
• The vectors 1

1
1

 ,
 1
−1
0

 ,
 1

1
−2


form an orthogonal set.

This section has two ideas:

• Orthogonal sets are nice to have.
• How do we find orthogonal sets?

13.A. Orthogonal sets are nice to have.

(a) If u1, . . . ,up is an orthogonal set of non-zero vectors in Rn, then the vectors
u1, . . . ,up are linearly independent.

(b) Suppose u1, . . . ,up is an orthogonal set of non-zero vectors in Rn. Let U be the
subspace of Rn spanned by u1, . . . ,up. If u is an arbitrary element of U , then it
is easy to find the coefficients of u with respect to u1, . . . ,up.

The proof of (a). Suppose c1, . . . ,cp are real numbers and ∑
p
i=1 ciui = 0. Multiply

by uT
j to learn that

c j(uT
j u j) = 0,

for each j. Notice that c j and (uT
j u j) are both real numbers. If the product of two

real numbers is zero, then one of the numbers is zero. The real number (uT
j u j) is

the sum of perfect squares of real numbers (and u j has at least one non-zero entry
by hypothesis). It follows that c j = 0 for each j. �

Justification of (b). Obviously, you could Elementary Row Operations to the matrix

[u1|u2| . . . |up|u]

in order to find numbers c1, . . . ,cp with
p

∑
i=1

ciui = u.

But that takes a significant amount of effort.
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There is a much easier way to find numbers c1, . . . ,cp with
p

∑
i=1

ciui = u.

Merely multiply both sides of the equation by uT
j to see that

c juT
j u j = uT

j u;

hence,

c j =
uT

j u

uT
j u j

,

for each j.

Example 13.3. Write u =

1
2
3

 as a linear combination of

u1 =

1
1
1

 , u2 =

 1
−1
0

 , u3 =

 1
1
−2


If u = ∑

3
i=1 ciui, then

uT
1 u = c1uT

1 u1;

hence 2 = 1+2+3
3 = c1;

uT
2 u = c2uT

2 u2;

hence −1
2 = 1−2

2 = c2; and c3 =
3−6

6 = −1
2 .

Check.

2

1
1
1

− 1
2

 1
−1
0

− 1
2

 1
1
−2

=

2−1
2

2+1

=

1
2
3

 .

13.B. How do we find orthogonal sets? One uses Gram-Schmidt Orthogonaliza-
tion to find an orthogonal basis for a vector space.

Let v1, . . . ,vn be linearly independent vectors. We produce u1, . . . ,un, which is
an orthogonal set and also is a basis for the span of v1, . . . ,vn.

Define

u1 = v1

u2 = v2−
uT

1 v2

uT
1 u1

u1 Notice that uT
1 u2 = 0.

u3 = v3−
uT

1 v3

uT
1 u1

u1−
uT

2 v3

uT
2 u2

u2 Notice that uT
1 u3 = uT

2 u3 = 0.

u4 = v4−
uT

1 v4

uT
1 u1

u1−
uT

2 v4

uT
2 u2

u2−
uT

3 v4

uT
3 u3

u3 Notice that uT
1 u4 = uT

2 u4 = uT
3 u4 = 0.

etc.
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Example 13.4. Find an orthogonal basis for the null space of A =
[
1 2 1 3

]
.

One basis for the null space of A is

v1 =


−2
1
0
0

 , v2 =


−1
0
1
0

 , v3 =


−3
0
0
1

 .
Let u1 = v1. Let

u′2 = v2−
uT

1 v2

uT
1 u1

u1 =


−1
0
1
0

− 2
5


−2
1
0
0

=
1
5


−1
−2
5
0

 .

Let u2 = 5u′2 =


−1
−2
5
0

. We verify that u2 is in the null space of A and uT
2 u1 = 0. Let

u′3 = v3−
uT

1 v3

uT
1 u1

u1−
uT

2 v3

uT
2 u2

u2 =


−3
0
0
1

− 6
5


−2
1
0
0

− 3
30


−1
−2
5
0



=


−3
0
0
1

− 6
5


−2
1
0
0

− 1
10


−1
−2
5
0

=
1

10


−5
−10
−5
10

=
5

10


−1
−2
−1
2

 .
Let

u3 = 10u′3 =


−1
−2
−1
2

 .
Thus

u1 =


−2
1
0
0

 , u2 =


−1
−2
5
0

 , u3 =


−1
−2
−1
2


is an orthogonal basis for the null space of A. Be sure to verify that Aui = 0 and
uT

i u j = 0 for i 6= j.


