MATH 544, 1998, EXAM 4

PRINT Your Name:
There are 9 problems on 4 pages. Problem 1 is worth 20 points. Each of the other problems is worth 10 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. Let

$$
A=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & 0 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
5 \\
2 \\
1 \\
4
\end{array}\right]
$$

(It might be to your advantage to notice that the columns of A form an orthogonal set.)
(a) Find a matrix B so that $B A$ is equal to the 3×3 identity matrix.
(b) Solve $A x=b$.
2. Define "column space". Use complete sentences.
3. Define "linear transformation". Use complete sentences.
4. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 nonsingular matrices, then $A+B$ is a nonsingular matrix.
5. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If U and V are subspaces of \mathbb{R}^{n}, then the intersection of U and V is also a subspace of \mathbb{R}^{n}.

6 . Let W be the subspace of \mathbb{R}^{4} which is spanned by

$$
w_{1}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \quad w_{2}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right], \quad w_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right] .
$$

Find an orthogonal set which forms a basis for W.
7. Is

$$
\left\{\left.\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \right\rvert\, x_{1} x_{2}=x_{3}\right\}
$$

a vector space? If so, explain why. If not, give an example to show that one of the rules of vector space fails to hold.
8. Is the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which is defined by

$$
F\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2}
\end{array}\right],
$$

a linear transformation? If so, explain why. If not, give an example to show that one of the rules of linear transformation fails to hold.
9. Is the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$, which is defined by

$$
F\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right]
$$

a linear transformation? If so, explain why. If not, give an example to show that one of the rules of linear transformation fails to hold.

