MATH 544, 1998, EXAM 1

PRINT Your Name:
There are 9 problems on 4 pages. Problem 1 is worth 12 points. Each of the other problems is worth 11 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible.

1. Solve the following system of equations:

$$
\begin{aligned}
& x_{1}+x_{2}-x_{5}=1 \\
& x_{2}+2 x_{3}+x_{4}+3 x_{5}=1 \\
& x_{1} \quad-x_{3}+x_{4}+x_{5}=0
\end{aligned}
$$

2. Find all values of a for which the following system has no solution:

$$
\begin{aligned}
x_{1}+2 x_{2} & =-3 \\
a x_{1} & -2 x_{2}
\end{aligned}=5
$$

3. Solve $A x=b$ for

$$
\left[\begin{array}{ccccccc}
1 & 2 & 3 & 0 & 4 & 5 & 0 \\
0 & 0 & 0 & 1 & 6 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
8 \\
9 \\
10
\end{array}\right]
$$

4. Solve $A x=b$ for

$$
\left[\begin{array}{ccccccc}
1 & 2 & 3 & 0 & 4 & 5 & 0 \\
0 & 0 & 0 & 1 & 6 & 7 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{c}
8 \\
9 \\
10
\end{array}\right]
$$

5. Compute

$$
\left[\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
3
\end{array}\right]
$$

6. Find scalars a_{1} and a_{2} so that $a_{1} r+a_{2} s=t$, where

$$
r=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad s=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \text { and } \quad t=\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

7. Find x so that $x^{\mathrm{T}} a=6$ and $x^{\mathrm{T}} b=2$, where

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad a=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
3 \\
4
\end{array}\right] .
$$

8. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 symmetric matrices, then $A B$ is a symmetric matrix.
9. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrices with $A^{2}=A B$, then $A=B$.
