MATH 544, 1998, EXAM 1

1. Solve the following system of equations:

2. Find all values of a for which the following system has no solution:

3. Solve Ax = b for

1	2	3	0	4	5	0			8
0	0	0	1	6	7	0	and	b =	9
0	0	0	0	0	0	1			10

4. Solve Ax = b for

1	2	3	0	4	5	0			$\begin{bmatrix} 8 \end{bmatrix}$
0	0	0	1	6	7	0	and	b =	9
0	0	0	0	0	0	0			10

5. Compute

$$\begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

6. Find scalars a_1 and a_2 so that $a_1r + a_2s = t$, where

$$r = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad s = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \text{ and } t = \begin{bmatrix} 1 \\ 4 \end{bmatrix}.$$

7. Find x so that $x^{\mathrm{T}}a = 6$ and $x^{\mathrm{T}}b = 2$, where

$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 $a = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $b = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$.

- 8. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 symmetric matrices, then AB is a symmetric matrix.
- 9. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrices with $A^2 = AB$, then A = B.