MATH 544, 1997, FINAL EXAM

PRINT Your Name: \qquad
There are 18 problems on 7 pages. Problem 1 is worth 14 points. Each of the other problems is worth 8 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. NO CALCULATORS.

1. Let A be an $n \times n$ matrix. List 8 statements that are equivalent to the statement " A is nonsingular".
2. Define "linear transformation".
3. Define "null space".
4. Define "span".
5. Let V be the vector space of polynomials $f(x)$ of degree at most three with $f(1)=0$. Record a basis for V. No justification is needed. Let

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 2 & 6 & 2 & 8 \\
1 & 2 & 3 & 9 & 2 & 8 \\
1 & 2 & 3 & 9 & 3 & 12 \\
2 & 4 & 5 & 15 & 5 & 20
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
3 \\
2 \\
4 \\
7
\end{array}\right] .
$$

6. Find a basis for the row space of A.
7. Find a basis for the column space of A.
8. Find a basis for the null space of A.
9. Solve $A x=b$.

Let

$$
A=\left[\begin{array}{ll}
\frac{5}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{5}{2}
\end{array}\right]
$$

10. Find an invertible matrix S and a diagonal matrix D with $S^{-1} A S=D$.
11. Find a matrix B with $B^{2}=A$.
12. Let A be a symmetric matrix and let u and v be eigenvectors of A which belong to different eigenvalues. PROVE that $u^{\mathrm{T}} v=0$.
13. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrcies with A non-singular, then the column space of $A B$ is equal to the column space of B.
14. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 symmetric matrices, then $A B$ is a symmetric matrix.
15. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 nonsingular matrices, then $A B$ is a nonsingular matrix.
16. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 nonsingular matrices, then $A+B$ is a nonsingular matrix.
17. Find an orthogonal set which is a basis for the null space of $\left[\begin{array}{llll}1 & 2 & 1 & 2\end{array}\right]$.
