MATH 544, 1997, EXAM 4

PRINT Your Name: \qquad
There are 10 problems on 6 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. NO CALCULATORS.

1. Define "linear transformation".
2. Define "eigenvalue".
3. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrices, then $\operatorname{det}(A+B)=\operatorname{det} A+\operatorname{det} B$.
4. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A is a 2×2 matrix and c is a constant, then $\operatorname{det}(c A)=c \operatorname{det} A$.
5. Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with

$$
T\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad \text { and } \quad T\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{c}
1 \\
-2 \\
3
\end{array}\right]
$$

Find a matrix A with $T(v)=A v$ for all $v \in \mathbb{R}^{2}$.
6. Solve $A x=b$, where

$$
A=\left[\begin{array}{ccc}
10 & 1 & 35 \\
11 & -2 & 2 \\
12 & 1 & -31
\end{array}\right], \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

(Note. The columns of A form an orthogonal set.)
7. Find all eigenvalues and eigenvectors of

$$
A=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right] .
$$

8. Consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which is given by reflection across the line $y=x+1$. Is T a linear transformation? If so, then give a matrix with $T(v)=A v$ for all $v \in \mathbb{R}^{2}$. If not, then show why not.
9. Consider the function $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which is given by reflection across the line $y=-x$. Is T a linear transformation? If so, then give a matrix with $T(v)=A v$ for all $v \in \mathbb{R}^{2}$. If not, then show why not.
10. Find an orthogonal set which is a basis for the null space of $\left[\begin{array}{llll}1 & 2 & 2 & 1\end{array}\right]$.
