MATH 544, 1997, EXAM 3

PRINT Your Name: \qquad
There are 4 pages. The problems are numbered from 1 to 8 . The exam is worth 100 points. SHOW your work. $C I R C L E$ your answer. CHECK your answer whenever possible.

1. Let

$$
A=\left[\begin{array}{cccccccc}
1 & 0 & 2 & 3 & 4 & 0 & 5 & 0 \\
1 & 0 & 2 & 3 & 4 & 0 & 11 & 0 \\
1 & 0 & 2 & 3 & 4 & 0 & 11 & 1
\end{array}\right]
$$

(a) (10 points) Find a basis for the null space of A.
(b) (10 points) Find a basis for the column space of A.
2. Consider the vectors

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad u_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], \quad u_{3}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
-1
\end{array}\right], \quad \text { and } \quad u_{4}=\left[\begin{array}{c}
-1 \\
1 \\
-1 \\
1
\end{array}\right]
$$

(a) (2 points) Do the vectors $u_{1}, u_{2}, u_{3}, u_{4}$ form an orthogonal set? Why?
(b) (9 points) Express $v=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ as a linear combination of $u_{1}, u_{2}, u_{3}, u_{4}$.
(c) (9 points) Find the inverse of $\left[\begin{array}{cccc}1 & 1 & 0 & -1 \\ 1 & 0 & 1 & 1 \\ 1 & -1 & 0 & -1 \\ 1 & 0 & -1 & 1\end{array}\right]$.
3. (10 points) Define "basis".
4. (10 points) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrcies with A non-singular, then the column space of $A B$ is equal to the column space of B.
5. (10 points) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrcies with A non-singular, then the null space of $A B$ is equal to the null space of B.
6. (10 points) Define "null space".
7. (10 points) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrcies with A non-singular, then the column space of $B A$ is equal to the column space of B.
8. (10 points) True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are 2×2 matrcies with A non-singular, then the null space of $B A$ is equal to the null space of B.

