MATH 544, 1997, EXAM 2

PRINT Your Name:______ There are 10 problems on 4 pages. Each problem is worth 10 points. SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible.

- 1. Define "linearly independent".
- 2. Define "nonsingular".
- 3. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If A and B are $n \times n$ matrices, then

the null space of $A + B \subseteq$ the null space of $A \cap$ the null space of B.

- 4. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If V and W are subspaces of \mathbb{R}^n , then the union $V \cup W$ is a subspace of \mathbb{R}^n .
- 5. True or False. If the statement is true, then PROVE the statement. If the statement is false, then give a COUNTEREXAMPLE. If V and W are subspaces of \mathbb{R}^n , then the intersection $V \cap W$ is a subspace of \mathbb{R}^n .
- 6. Let $V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} \in \mathbb{R}^2 \mid x^2 + y^2 = 1 \right\}$. Is V a subspace of \mathbb{R}^2 ? Justify your answer.
- 7. Is $v = \begin{bmatrix} 0\\3\\5 \end{bmatrix}$ in the column space of $A = \begin{bmatrix} 1 & 2\\4 & 5\\6 & 7 \end{bmatrix}$? Justify your answer.
- 8. Let A be a fixed 2×3 matrix. Let $V = \{v \in \mathbb{R}^2 \mid v = Ax \text{ for some } x \in \mathbb{R}^3\}$. Is V a subspace of \mathbb{R}^2 ? Justify your answer.

Problems 9 and 10 both use the matrix

$$A = \begin{bmatrix} 1 & 3 & 0 & 2 & 0 \\ 1 & 3 & 1 & 6 & 0 \\ 1 & 3 & 1 & 6 & 1 \\ 2 & 6 & 1 & 8 & 1 \end{bmatrix}.$$

9. Find a basis for the null space of A.

10. Find a basis for the column space of A.