Math 544, Fall 2009, Exam 3

Use my paper. Please turn the problems in order. Please leave 1 square inch in the upper left hand corner for the staple.

The exam is worth 50 points. There are 8 problems. SHOW your work. *CIRCLE* your answer. **CHECK** your answer whenever possible. **No Calculators.**

- 1. (6 points) Define "linear transformation". Use complete sentences.
- 2. (6 points) The *trace* of the square matrix A is the sum of the numbers on its main diagonal. Let V be the set of all 3×3 matrices with trace 0. Is the set V a vector space? Explain.
- 3. (6 points) Let $A = \begin{bmatrix} 7 & 6 \\ -3 & -2 \end{bmatrix}$. Find a matrix B with $B^2 = A$. Check your answer.
- 4. (6 points) Find an orthogonal set which is a basis for the null space of $A = \begin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix}$. Check your answer.
- 5. Let $T: V \to W$ be a linear transformation of vector spaces. Suppose that the vectors $v_1 \ldots, v_a$ in V are a basis for the null space of T and that w_1, \ldots, w_b in W are a basis for the image of T. Let u_1, \ldots, u_b in V be vectors with $T(u_i) = w_i$ for $1 \le i \le b$.
 - (a) (4 points) Prove that $v_1, \ldots, v_a, u_1, \ldots, u_b$ span V.
 - (b) (4 points) Prove that $v_1, \ldots, v_a, u_1, \ldots, u_b$ are linearly independent vectors in V.
- 6. (6 points) Let

$$A = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & -1 & 0 & -1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & -1 & 1 \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}.$$

Solve Ax = b. (You may do the problem any way you wish; however, you may find it helpful to notice that the columns of A form an orthogonal set.) **Check your answer.**

- 7. (6 points) Let $W = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable}\}$. Is W a vector space? Explain.
- 8. (6 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be reflection across the line $y = \frac{1}{\sqrt{3}}x$. Find a matrix M with T(v) = Mv for all vectors $v \in \mathbb{R}^2$.