Math 544, Fall 2009, Exam 3
Use my paper. Please turn the problems in order. Please leave 1 square inch in the upper left hand corner for the staple.
The exam is worth 50 points. There are 8 problems. SHOW your work. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. (6 points) Define "linear transformation". Use complete sentences.
2. (6 points) The trace of the square matrix A is the sum of the numbers on its main diagonal. Let V be the set of all 3×3 matrices with trace 0 . Is the set V a vector space? Explain.
3. (6 points) Let $A=\left[\begin{array}{cc}7 & 6 \\ -3 & -2\end{array}\right]$. Find a matrix B with $B^{2}=A$. Check your answer.
4. (6 points) Find an orthogonal set which is a basis for the null space of $A=\left[\begin{array}{llll}1 & -1 & 1 & -1\end{array}\right]$. Check your answer.
5. Let $T: V \rightarrow W$ be a linear transformation of vector spaces. Suppose that the vectors $v_{1} \ldots, v_{a}$ in V are a basis for the null space of T and that w_{1}, \ldots, w_{b} in W are a basis for the image of T. Let u_{1}, \ldots, u_{b} in V be vectors with $T\left(u_{i}\right)=w_{i}$ for $1 \leq i \leq b$.
(a) (4 points) Prove that $v_{1}, \ldots, v_{a}, u_{1}, \ldots, u_{b}$ span V.
(b) (4 points) Prove that $v_{1}, \ldots, v_{a}, u_{1}, \ldots, u_{b}$ are linearly independent vectors in V.
6. (6 points) Let

$$
A=\left[\begin{array}{cccc}
1 & 1 & 0 & -1 \\
1 & -1 & 0 & -1 \\
1 & 0 & 1 & 1 \\
1 & 0 & -1 & 1
\end{array}\right] \quad \text { and } \quad b=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

Solve $A x=b$. (You may do the problem any way you wish; however, you may find it helpful to notice that the columns of A form an orthogonal set.) Check your answer.
7. (6 points) Let $W=\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f$ is differentiable $\}$. Is W a vector space? Explain.
8. (6 points) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be reflection across the line $y=\frac{1}{\sqrt{3}} x$. Find a matrix M with $T(v)=M v$ for all vectors $v \in \mathbb{R}^{2}$.

