We see that $\left.\left(x^{2}+y^{2}\right)\right|_{(0,1)}=1$; so, the segment from $(0,1)$ to $\left(1 / 10, y_{1}\right)$ has slope equal to 1 . This segment lives on the line

$$
y-1=1(x-0)
$$

which is $y=x+1$. Thus, $y_{1}=1 / 10+1=11 / 10$.
The line segment from $\left(1 / 10, y_{1}\right)$ to $\left(2 / 10, y_{2}\right)$ has slope equal to

$$
\left.\left(x^{2}+y^{2}\right)\right|_{1 / 10, y_{1}}=\left.\left(x^{2}+y^{2}\right)\right|_{(1 / 10,11 / 10)}=(1 / 10)^{2}+(11 / 10)^{2}=122 / 100
$$

This segment lives on the line

$$
y-11 / 10=(122 / 100)(x-1 / 10)
$$

which is

$$
y=(122 / 100) x+(1100-122) / 1000
$$

Our approximation of $y(2 / 10)$ is $y_{2}=(122 / 100)(2 / 10)+(1100-122) / 1000=1.222$.
4. Solve $x \frac{d y}{d x}+6 y=3 x y^{4 / 3}$. Express your answer in the form $y(x)$. Check your answer.
This is a Bernoulli equation. Let $v=y^{-1 / 3}$. Thus, $v^{\prime}=(-1 / 3) y^{-4 / 3} y^{\prime}$ and $-3 v^{\prime} y^{4 / 3}=y^{\prime}$. The original DE is

$$
x\left(-3 v^{\prime} y^{4 / 3}\right)+6 y=3 x y^{4 / 3} .
$$

Divide by $y^{4 / 3}$ to get

$$
-3 x v^{\prime}+6 y^{-1 / 3}=3 x,
$$

which is the First Order Linear DE

$$
-3 x v^{\prime}+6 v=3 x .
$$

Divide by $-3 x$:

$$
v^{\prime}-(2 / x) v=-1
$$

The integrating factor is

$$
\mu=e^{\int-(2 / x) d x}=e^{-2 \ln x}=1 / x^{2} .
$$

Multiply both sides by the integrating factor

$$
v^{\prime} / x^{2}-2 / x^{3}=-1 / x^{2}
$$

