Quiz 4, February 16, 2017, 11:40 class

Solve $x^{2} y^{\prime}+2 x y=5 y^{3}$. Express your answer in the form $y=y(x)$. Please check your answer.
ANSWER: This is a Bernoulli equation. We let $v=y^{1-3}=y^{-2}$. It follows that $\frac{d v}{d x}=-2 y^{-3} \frac{d y}{d x}$. Multiply both sides by $-2 y^{-3}$ to obtain:

$$
\begin{gathered}
x^{2}\left(-2 y^{-3} y^{\prime}\right)-4 x y^{-2}=-10 \\
x^{2} \frac{d v}{d x}-4 x v=-10
\end{gathered}
$$

Divide both sides by x^{2} :

$$
\frac{d v}{d x}-4 x^{-1} v=-10 x^{-2} .
$$

Multiply both sides by

$$
\mu=e^{-4 \int x^{-1} d x}=e^{-4 \ln (x)}=x^{-4}
$$

to obtain

$$
x^{-4} \frac{d v}{d x}-4 x^{-5} v=-10 x^{-6}
$$

Notice that the left side is

$$
\frac{d}{d x}\left(x^{-4} v\right)
$$

Integrate both sides to obtain

$$
\begin{gathered}
x^{-4} v=2 x^{-5}+C \\
v=2 x^{-1}+C x^{4} \\
y^{-2}=\left(2 x^{-1}+C x^{4}\right) \\
y=\frac{1}{\sqrt{2 x^{-1}+C x^{4}}} .
\end{gathered}
$$

Check. Plug the proposed answer into the left side of the original DE to obtain

$$
\begin{gathered}
x^{2} y^{\prime}+2 x y=x^{2}\left(\frac{-1}{2}\right)\left(2 x^{-1}+C x^{4}\right)^{-3 / 2}\left(-2 x^{-2}+4 C x^{3}\right)+2 x\left(2 x^{-1}+C x^{4}\right)^{-1 / 2} \\
=\left(2 x^{-1}+C x^{4}\right)^{-3 / 2}\left[x^{2}\left(\frac{-1}{2}\right)\left(-2 x^{-2}+4 C x^{3}\right)+2 x\left(2 x^{-1}+C x^{4}\right)\right] \\
=\left(2 x^{-1}+C x^{4}\right)^{-3 / 2}\left[\left(1-2 C x^{5}\right)+\left(4+2 C x^{5}\right)\right] \\
=\left(2 x^{-1}+C x^{4}\right)^{-3 / 2}(5)=5 y^{3} .
\end{gathered}
$$

