\qquad

No calculators, cell phones, computers, notes, etc.

Circle your answer. Make your work correct, complete and coherent.
The quiz is worth 5 points. The solutions will be posted on my website later today.

Quiz 3, February 1, 2021

Suppose that a car starts from rest, its engine providing an acceleration of $10 \mathrm{ft} / \mathrm{sec}^{2}$, while air resistance provides $\frac{1}{10} \mathrm{ft} / \mathrm{sec}^{2}$ of deceleration for each foot per second of the car's velocity.
(a) Find $\lim _{t \rightarrow \infty} v(t)$, where $v(t)$ is the velocity of the car at time t.
(b) How long does it take for the car to reach 90% of the answer to (a)? How far does it travel while doing so?

ANSWER: We must solve the Initial Value Problem

$$
\frac{d v}{d t}=10-\frac{1}{10} v \quad v(0)=0
$$

Separate the variables and integrate

$$
\begin{gathered}
\int \frac{d v}{10-\frac{1}{10} v}=\int d t \\
-10 \ln \left|10-\frac{1}{10} v\right|+C=t
\end{gathered}
$$

When $t=0$, then $v=0$; so

$$
-10 \ln 10+C=0
$$

and $C=10 \ln 10$. Thus,

$$
-10 \ln \left|10-\frac{1}{10} v\right|=t-10 \ln 10
$$

Divide both sides by -10 to obtain

$$
\ln \left|10-\frac{1}{10} v\right|=\frac{-t}{10}+\ln 10 .
$$

Exponentiate both sides to obtain

$$
\left|10-\frac{1}{10} v\right|=10 e^{-t / 10}
$$

At the beginning of the problem, $v=0$ hence at least at the beginning of the problem $10-\frac{1}{10} v$ is positive and

$$
\left|10-\frac{1}{10} v\right|=10-\frac{1}{10} v .
$$

Thus,

$$
\begin{aligned}
& 10-\frac{1}{10} v=10 e^{-t / 10} \\
& 10-10 e^{-t / 10}=\frac{1}{10} v
\end{aligned}
$$

Multiply both sides by 10

$$
100-100 e^{-t / 10}=v
$$

(We have solved the IVP. Now we can answer the questions.) Observe that

$$
\lim _{t \rightarrow \infty} v=\lim _{t \rightarrow \infty}\left(100-100 e^{-t / 10}\right)=100
$$

The limit of the car's velocity is 100 feet $/ \mathrm{sec}$.
The car reaches the speed 90 , when $v(t)=90$; so

$$
\begin{gathered}
100-100 e^{-t / 10}=90 \\
100-90=100 e^{-t / 10} \\
10=100 e^{-t / 10} \\
\frac{1}{10}=e^{-t / 10} \\
\ln \frac{1}{10}=-t / 10 \\
-10 \ln \frac{1}{10}=t
\end{gathered}
$$

Of course $-\ln x=\ln \frac{1}{x}$.
The car reaches the velocity 90 feet/second after $10 \ln 10$ seconds.
As the car travels from rest to 90 feet/second, the ditance it travels is

$$
\begin{gathered}
\int_{0}^{10 \ln 10} v(t) d t=\int_{0}^{10 \ln 10}\left(100-100 e^{-t / 10}\right) d t \\
=100 t+\left.1000 e^{-t / 10}\right|_{0} ^{10 \ln 10}=1000 \ln 10+1000 e^{-\ln 10}-1000 \\
=1000 \ln 10+100-1000=(1000 \ln 10-900) \text { feet }
\end{gathered}
$$

Of course, we used $e^{-\ln 10}=\frac{1}{10}$.

