1 14

- 5. Consider the Differential Equation $\frac{dx}{dt}=-(3-x)^2$.

 (a) Find all equilibrium solutions $x(t)=x_e$ for all t for some constant

Solve $-(3-x)^2=0$ to see that x=3 is the only equilibrium solution for the given DE.

(b) For each equilibrium solution $x(t) = x_e$ of the DE, answer the following questions:

Draw the phase diagram:

(i) If x(0) is a little less than x_e , does the corresponding solution x(t) head toward or away from the equilibrium solution $x = x_e$.

If x(0) is a little less than 3, then we look at the phase diagram to see that x' < 0, so x(t) is a decreasing function. Thus, x(t) heads away from 3.

(ii) If x(0) is a little more than x_e , does the corresponding solution x(t) head toward or away from the equilibrium solution $x = x_e$.

If x(0) is a little more than 3, then we look at the phase diagram to see that x' < 0, so x(t) is a decreasing function. Thus, x(t) heads toward 3.

(c) Sketch a few solutions of the DE.

(d) Solve the DE.

Separate the variables and integrate to see that $\int \frac{dx}{(3-x)^2} dx = -\int dt$. So, $\frac{1}{3-x} = -t + C$. We solve for $x: \frac{1}{-t+C} = 3-x$; or $x = 3-\frac{1}{-t+C}$; or $x = 3+\frac{1}{t-C}$. By the way, this answer checks. We compute $\frac{dx}{dt} = -\frac{1}{(t-C)^2}$.

On the other hand, $-(3-x)^2 = -\left(-\frac{1}{t-C}\right)^2$ and these are the same. Of course

the hyperbolas $x = 3 + \frac{1}{t - C}$ look like the pictures given below and this agrees with our expectations.

